1.Leyard Optoelectronic Co., Ltd, 100091 Beijing, China
2.State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, 100871 Beijing, China
3.State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
4.Peking University Yangtze Delta Institute of Optoelectronics, 226010 Nantong, Jiangsu, China
Xiaoyu Yang (yangxy_seed@pku.edu.cn)
Xinqiang Wang (wangshi@pku.edu.cn)
Changjun Lu (luchangjun@leyard.com)
Published:31 August 2023,
Published Online:24 July 2023,
Received:20 February 2023,
Revised:30 May 2023,
Accepted:05 June 2023
Scan QR Code
Yang, X. Y. et al. Focus on perovskite emitters in blue light-emitting diodes. Light: Science & Applications, 12, 1566-1582 (2023).
Yang, X. Y. et al. Focus on perovskite emitters in blue light-emitting diodes. Light: Science & Applications, 12, 1566-1582 (2023). DOI: 10.1038/s41377-023-01206-2.
Blue perovskite light-emitting diodes (PeLEDs) are essential in pixels of perovskite displays
while their progress lags far behind their red and green counterparts. Here
we focus on recent advances of blue PeLEDs and systematically review the noteworthy strategies
which are categorized into compositional engineering
dimensional control
and size confinement
on optimizing microstructures
energy landscapes
and charge behaviors of wide-bandgap perovskite emitters (bandgap > 2.5 eV). Moreover
the stability of perovskite blue emitters and related devices is discussed. In the end
we propose a technical roadmap for the fabrication of state-of-the-art blue PeLEDs to chase and achieve comparable performance with the other two primary-color devices.
Liu, Y. J. et al. Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes.Nat. Commun.13, 7425 (2022)..
Yang, X. L. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation.Nat. Commun.9, 570 (2018)..
Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation.Adv. Mater.33, 2103268 (2021)..
Ma, D. X. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs.Nature599, 594–598 (2021)..
Guo, B. B. et al. Ultrastable near-infrared perovskite light-emitting diodes.Nat. Photonics16, 637–643 (2022)..
Xu, W. D. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes.Nat. Photonics13, 418–424 (2019)..
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes.Nature611, 688–694 (2022)..
Jiang, J. et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations.Adv. Mater.34, 2204460 (2022)..
Zhang, J. F. et al. Blue light-emitting diodes based on halide perovskites: recent advances and strategies.Mater. Today51, 222–246 (2021)..
Ren, Z. W. et al. Strategies toward efficient blue perovskite light-emitting diodes.Adv. Funct. Mater.31, 2100516 (2021)..
Oh, J. T. et al. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures.Opt. Express26, 11194–11200 (2018)..
Fan, K. L. et al. Size effects of AlGaInP red vertical micro-LEDs on silicon substrate.Results Phys.36, 105449 (2022)..
Sun, W. C. et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm.Nanoscale14, 5994–5998 (2022)..
Liu, Z. J. et al. Micro-light-emitting diodes with quantum dots in display technology.Light Sci. Appl.9, 83 (2020)..
Chen, Y. H.&Zhou, H. P. Defects chemistry in high-efficiency and stable perovskite solar cells.J. Appl. Phys.128, 060903 (2020)..
Brandt, R. E. et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites.MRS Commun.5, 265–275 (2015)..
Xing, G. C. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing.Nat. Mater.13, 476–480 (2014)..
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut.Nano Lett.15, 3692–3696 (2015)..
Yang, X. Y. et al. Superior carrier lifetimes exceeding 6 μs in polycrystalline halide perovskites.Adv. Mater.32, 2002585 (2020)..
Fang, T., Zhang, F., Yuan, S., Zeng, H.&Song, J. Recent advances and prospects toward blue perovskite materials and light-emitting diodes.InfoMat1, 211–233 (2019)..
Zhu, H. X.&Liu, J. M. Electronic structure of organometal halide perovskite CH3NH3BiI3and optical absorption extending to infrared region.Sci. Rep.6, 37425 (2016)..
Liu, D. T. et al. Strain analysis and engineering in halide perovskite photovoltaics.Nat. Mater.20, 1337–1346 (2021)..
Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides.Sci. Adv.5, eaav0693 (2019)..
Ball, J. M.&Petrozza, A. Defects in perovskite-halides and their effects in solar cells.Nat. Energy1, 16149 (2016)..
Nenon, D. P. et al. Design principles for trap-free CsPbX3nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases.J. Am. Chem. Soc.140, 17760–17772 (2018)..
Lai, R. C.&Wu, K. F. Picosecond electron trapping limits the emissivity of CsPbCl3perovskite nanocrystals.J. Chem. Phys.151, 194701 (2019)..
Motti, S. G. et al. Defect activity in lead halide perovskites.Adv. Mater.31, 1901183 (2019)..
Motti, S. G. et al. Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility.Nat. Commun.12, 6955 (2021)..
Cho, J.&Kamat, P. V. Photoinduced phase segregation in mixed halide perovskites: thermodynamic and kinetic aspects of Cl–Br segregation.Adv. Opt. Mater.9, 2001440 (2021)..
Li, Z. C. et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%.Nat. Commun.10, 1027 (2019)..
Cheng, L. P. et al. Efficient CsPbBr3perovskite light-emitting diodes enabled by synergetic morphology control.Adv. Opt. Mater.7, 1801534 (2019)..
Karlsson, M. et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes.Nat. Commun.12, 361 (2021)..
Du, P. P. et al. Vacuum-deposited blue inorganic perovskite light-emitting diodes.ACS Appl. Mater. Interfaces11, 47083–47090 (2019)..
Van Der Stam, W. et al. Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3perovskite nanocrystals through cation exchange.J. Am. Chem. Soc.139, 4087–4097 (2017)..
Hou, S. C. et al. Efficient blue and white perovskite light-emitting diodes via manganese doping.Joule2, 2421–2433 (2018)..
Yong, Z. J. et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield.J. Am. Chem. Soc.140, 9942–9951 (2018)..
Zhang, S. et al. Enhancing quantum yield of CsPb(BrxCl1-x)3nanocrystals through lanthanum doping for efficient blue light-emitting diodes.Nano Energy77, 105302 (2020)..
Liu, M. et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight.Adv. Sci.4, 1700335 (2017)..
Bi, C. H. et al. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission.J. Phys. Chem. Lett.10, 943–952 (2019)..
Ahmed, G. H. et al. Giant photoluminescence enhancement in CsPbCl3perovskite nanocrystals by simultaneous dual-surface passivation.ACS Energy Lett.3, 2301–2307 (2018)..
Parobek, D. et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals.Nano Lett.16, 7376–7380 (2016)..
Liu, W. Y. et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content.J. Am. Chem. Soc.138, 14954–14961 (2016)..
Rossi, D. et al. Dynamics of exciton–Mn energy transfer in Mn-doped CsPbCl3perovskite nanocrystals.J. Phys. Chem. C.121, 17143–17149 (2017)..
Wang, Q. et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement.Nat. Commun.10, 5633 (2019)..
Xu, L. et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes.Mater. Today Nano6, 100036 (2019)..
Zhang, C. Y. et al. Effects of A site doping on the crystallization of perovskite films.J. Mater. Chem. A9, 1372–1394 (2021)..
Yang, Y. et al. Highly efficient pure-blue light-emitting diodes based on rubidium and chlorine alloyed metal halide perovskite.Adv. Mater.33, 2100783 (2021)..
Baek, S. et al. Development of mixed-cation CsxRb1–xPbX3perovskite quantum dots and their full-color film with high stability and wide color gamut.Adv. Opt. Mater.6, 1800295 (2018)..
Chu, Z. M. et al. Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes.Nat. Commun.11, 4165 (2020)..
Yuan, M. J. et al. Perovskite energy funnels for efficient light-emitting diodes.Nat. Nanotechnol.11, 872–877 (2016)..
Wang, N. N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells.Nat. Photonics10, 699–704 (2016)..
Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission.Nano Lett.17, 3701–3709 (2017)..
Yuan, S. et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes.Adv. Mater.31, 1904319 (2019)..
Ni, L. M. et al. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells.ACS Nano11, 10834–10843 (2017)..
Xing, J. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes.Nat. Commun.9, 3541 (2018)..
Jin, Y. et al. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes.Adv. Funct. Mater.30, 1908339 (2020)..
Deng, W. et al. 2D Ruddlesden–Popper perovskite nanoplate based deep-blue light-emitting diodes for light communication.Adv. Funct. Mater.29, 1903861 (2019)..
Liu, Y. L. et al. Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method.Nano Energy80, 105511 (2021)..
Pang, P. Y. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes.ACS Nano14, 11420–11430 (2020)..
Jiang, Y. Z. et al. Spectra stable blue perovskite light-emitting diodes.Nat. Commun.10, 1868 (2019)..
Wang, Y. K. et al. Chelating-agent-assisted control of CsPbBr3quantum well growth enables stable blue perovskite emitters.Nat. Commun.11, 3674 (2020)..
Shang, Y. Q. et al. Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure.Sci. Adv.5, eaaw8072 (2019)..
Alahbakhshi, M. et al. Highly efficient quasi 2D blue perovskite electroluminescence leveraging a dual ligand composition.Adv. Funct. Mater.2214315 (2023).
Gélvez-Rueda, M. C. et al. Formamidinium-based Dion-Jacobson layered hybrid perovskites: structural complexity and optoelectronic properties.Adv. Funct. Mater.30, 2003428 (2020)..
Peng, X. F. et al. Suppressed energy transfer loss of Dion–Jacobson perovskite enabled by DMSO vapor treatment for efficient sky-blue light-emitting diodes.ACS Energy Lett.8, 339–346 (2023)..
Zhu, Z. H. et al. Highly efficient sky-blue perovskite light-emitting diode via suppressing nonradiative energy loss.Chem. Mater.33, 4154–4162 (2021)..
Wang, G. et al. Hot-carrier tunable abnormal nonlinear absorption conversion in quasi-2D perovskite.Nat. Commun.13, 6935 (2022)..
Guan, Z. Q. et al. High-efficiency blue perovskite light-emitting diodes with improved photoluminescence quantum yield via reducing trap-induced recombination and exciton–exciton annihilation.Adv. Funct. Mater.32, 2203962 (2022)..
Cai, W. Q. et al. Unravelling alkali-metal-assisted domain distribution of quasi-2D perovskites for cascade energy transfer toward efficient blue light-emitting diodes.Adv. Sci.9, 2200393 (2022)..
Ma, D. X. et al. Chloride insertion–immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes.J. Am. Chem. Soc.142, 5126–5134 (2020)..
Qin, C. J. et al. Triplet management for efficient perovskite light-emitting diodes.Nat. Photonics14, 70–75 (2020)..
Ema, K. et al. Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials.Phys. Rev. Lett.100, 257401 (2008)..
Ghosh, D. et al. Lattice expansion in hybrid perovskites: effect on optoelectronic properties and charge carrier dynamics.J. Phys. Chem. Lett.10, 5000–5007 (2019)..
Liu, B. X. et al. Lattice strain modulation toward efficient blue perovskite light-emitting diodes.Sci. Adv.8, eabq0138 (2022)..
Jang, H. M. et al. Enhancing photoluminescence quantum efficiency of metal halide perovskites by examining luminescence-limiting factors.APL Mater.8, 020904 (2020)..
Zhu, H. M. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites.Science353, 1409–1413 (2016)..
Miyata, K. et al. Large polarons in lead halide perovskites.Sci. Adv.3, e1701217 (2017)..
Fu, P. F. et al. Perovskite nanocrystals: synthesis, properties and applications.Sci. Bull.62, 369–380 (2017)..
Shamsi, J. et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties.Chem. Rev.119, 3296–3348 (2019)..
Wang, H. R. et al. Efficient CsPbBr3nanoplatelet-based blue light-emitting diodes enabled by engineered surface ligands.ACS Energy Lett.7, 1137–1145 (2022)..
Zeng, Q. S. et al. Surface stabilization of colloidal perovskite nanocrystals via multi-amine chelating ligands.ACS Energy Lett.7, 1963–1970 (2022)..
Bi, C. H. et al. Suppressing auger recombination of perovskite quantum dots for efficient pure- blue-light-emitting diodes.ACS Energy Lett.8, 731–739 (2023)..
Bi, C. H. et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes.Adv. Mater.33, 2006722 (2021)..
Liu, Y. et al. Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes.J. Am. Chem. Soc.144, 4009–4016 (2022)..
Dong, Y. T. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots.Nat. Nanotechnol.15, 668–674 (2020)..
Ning, Z. J. et al. Quantum-dot-in-perovskite solids.Nature523, 324–328 (2015)..
Liu, Y. et al. Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix.J. Am. Chem. Soc.143, 15606–15615 (2021)..
De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals.ACS Nano10, 2071–2081 (2016)..
Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium Lead halide perovskite nanoplatelets with monolayer-level thickness control.J. Am. Chem. Soc.138, 1010–1016 (2016)..
Bekenstein, Y. et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies.J. Am. Chem. Soc.137, 16008–16011 (2015)..
Cui, J. Y. et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets.Sci. Adv.7, eabg8458 (2021)..
Yang, D. et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes.Nano Energy47, 235–242 (2018)..
Bera, S., Shyamal, S.&Pradhan, N. Chemically spiraling CsPbBr3perovskite nanorods.J. Am. Chem. Soc.143, 14895–14906 (2021)..
Zhang, C. X. et al. Metal halide perovskite nanorods: shape matters.Adv. Mater.32, 2002736 (2020)..
Zhang, D. Q. et al. Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires.Nat. Photonics16, 284–290 (2022)..
Fu, Y. et al. Strongly quantum-confined perovskite nanowire arrays for color-tunable blue-light-emitting diodes.ACS Nano16, 8388–8398 (2022)..
Yang, X. Y. et al. Towards micro-PeLED displays.Nat. Rev. Mater.8, 341–353 (2023)..
Kong, L. M. et al. Stability of perovskite light-emitting diodes: existing issues and mitigation strategies related to both material and device aspects.Adv. Mater.34, 2205217 (2022)..
Kim, Y. C. et al. High-performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents.Adv. Funct. Mater.31, 2005553 (2021)..
Ahmad, S. et al. Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability.Joule3, 794–806 (2019)..
Li, Z. et al. Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics.Nano Energy78, 105377 (2020)..
Cheng, L. et al. Halide homogenization for high-performance blue perovskite electroluminescence.Research2020, 9017871 (2020)..
Yang, X. Y. et al. Buried interfaces in halide perovskite photovoltaics.Adv. Mater.33, 2006435 (2021)..
Luo, D. Y. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells.Science360, 1442–1446 (2018)..
Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene).Nature567, 511–515 (2019)..
Guo, J. et al. Suppressing the defects in cesium-based perovskitesviapolymeric interlayer assisted crystallization control.J. Mater. Chem. A9, 26149–26158 (2021)..
Yu, H. L. et al. Color-stable blue light-emitting diodes enabled by effective passivation of mixed halide perovskites.J. Phys. Chem. Lett.12, 6041–6047 (2021)..
Tsai, H. et al. Cesium lead halide perovskite nanocrystals assembled in metal-organic frameworks for stable blue light emitting diodes.Adv. Sci.9, 2105850 (2022)..
Alahbakhshi, M. et al. Bright and effectual perovskite light-emitting electrochemical cells leveraging ionic additives.ACS Energy Lett.4, 2922–2928 (2019)..
Mishra, A. et al. Enhanced operational stability of perovskite light-emitting electrochemical cells leveraging ionic additives.Adv. Opt. Mater.8, 2000226 (2020)..
Mishra, A. et al. Pure blue electroluminescence by differentiated ion motion in a single layer perovskite device.Adv. Funct. Mater.31, 2102006 (2021)..
Mishra, A. et al. Leveraging a stable perovskite composite to satisfy blue electroluminescence standards.ACS Mater. Lett.3, 1357–1362 (2021)..
Liu, Y. Q. et al. Spectral stable blue-light-emitting diodes via asymmetric organic diamine based Dion−Jacobson perovskites.J. Am. Chem. Soc.143, 19711–19718 (2021)..
Ren, Z. W. et al. High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers.Adv. Mater.33, 2005570 (2021)..
Zhang, X. et al. Stable blue-emitting CsPbBr3nanoplatelets for lighting anddisplay applications.ACS Appl. Nano Mater.5, 17012–17021 (2022)..
Quan, L. N. et al. Perovskites for light emission.Adv. Mater.30, 1801996 (2018)..
Zhao, X. F. et al. Opportunities and challenges in perovskite light-emitting devices.ACS Photonics5, 3866–3875 (2018)..
Ren, Z. W. et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability.Adv. Funct. Mater.29, 1905339 (2019)..
Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures.Nature562, 249–253 (2018)..
Lin, K. B. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent.Nature562, 245–248 (2018)..
Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures.Nat. Photonics13, 760–764 (2019)..
Jiang, Y. Z. et al. Synthesis-on-substrate of quantumdot solids.Nature612, 679–684 (2022)..
Zhang, H. H. et al. Compact-type quasi-2D perovskite based on two conventional 3D perovskites.Nano Lett.23, 252–258 (2023)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution