1.Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072 Shaanxi, China
2.Key Laboratory of Magnetic Materials Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin 300350, China
4.Department of Chemistry and School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
5.State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
6.Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
Xiaowang Liu (iamxwliu@nwpu.edu.cn)
Wei Huang (iamwhuang@nwpu.edu.cn)
Published:31 August 2023,
Published Online:25 June 2023,
Received:23 February 2023,
Revised:03 June 2023,
Accepted:11 June 2023
Scan QR Code
Wang, Y. Z. et al. Efficient X-ray luminescence imaging with ultrastable and eco-friendly copper(Ⅰ)-iodide cluster microcubes. Light: Science & Applications, 12, 1595-1603 (2023).
Wang, Y. Z. et al. Efficient X-ray luminescence imaging with ultrastable and eco-friendly copper(Ⅰ)-iodide cluster microcubes. Light: Science & Applications, 12, 1595-1603 (2023). DOI: 10.1038/s41377-023-01208-0.
The advancement of contemporary X-ray imaging heavily depends on discovering scintillators that possess high sensitivity
robust stability
low toxicity
and a uniform size distribution. Despite significant progress in this field
the discovery of a material that satisfies all of these criteria remains a challenge. In this study
we report the synthesis of monodisperse copper(Ⅰ)-iodide cluster microcubes as a new class of X-ray scintillators. The as-prepared microcubes exhibit remarkable sensitivity to X-rays and exceptional stability under moisture and X-ray exposure. The uniform size distribution and high scintillation performance of the copper(Ⅰ)-iodide cluster microcubes make them suitable for the fabrication of large-area
flexible scintillating films for X-ray imaging applications in both static and dynamic settings.
Büchele, P. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors.Nat. Photonics9, 843–848 (2015)..
Ou, X. Y. et al. High-resolution X-ray luminescence extension imaging.Nature590, 410–415 (2021)..
Ma, W. B. et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging.Nat. Mater.21, 210–216 (2022)..
Wei, H. T.&Huang, J. S. Halide lead perovskites for ionizing radiation detection.Nat. Commun.10, 1066 (2019)..
Maddalena, F. et al. Inorganic, organic, and perovskite halides with nanotechnology for high-light yield X- and γ-ray scintillators.Crystals9, 88 (2019)..
Heo, J. H. et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging.Adv. Mater.30, 1801743 (2018)..
Wang, Y. X. et al. Emergence of uranium as a distinct metal center for building intrinsic X-ray scintillators.Angew. Chem. Int. Ed.57, 7883–7887 (2018)..
Spahn, M. et al. X-ray detectors in medical imaging.Nucl. Instrum. Methods Phys. Res. Sect. A731, 57–63 (2013)..
Dujardin, C. et al. Needs, trends, and advances in inorganic scintillators.IEEE Trans. Nucl. Sci.65, 1977–1997 (2018)..
Lecoq, P. Development of new scintillators for medical applications.Nucl. Instrum. Methods Phys. Res. Sect. A809, 130–139 (2016)..
Wang, J. X. et al. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators.Nat. Photonics16, 869–875 (2022)..
Zhao, J. J. et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays.Nat. Photonics14, 612–617 (2020)..
Liu, J. Y. et al. Flexible, printable soft-X-Ray detectors based on all-inorganic perovskite quantum dots.Adv. Mater.31, 1901644 (2019)..
van Breemen, A. J. J. M. et al. Curved digital X-ray detectors.npj Flex. Electron.4, 22 (2020)..
Liang, Z. Y. et al. Thermoplastic membranes incorporating semiconductive metal–organic frameworks: an advance on flexible x-ray detectors.Angew. Chem. Int. Ed.59, 11856–11860 (2020)..
Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators.Nature561, 88–93 (2018)..
Zhang, H. et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure.Adv. Mater.33, 2102529 (2021)..
Li, Y. et al. Lead-halide Cs4PbBr6single crystals for high-sensitivity radiation detection.NPG Asia Mater.13, 40 (2021)..
Cao, F.et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept.ACS Nano14, 5183–5193 (2020)..
Zhang, Y. H. et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens.ACS Nano13, 2520–2525 (2019)..
Xu, L. J. et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide.Nat. Commun.11, 4329 (2020)..
Hou, J. W. et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses.Science374, 621–625 (2021)..
Gandini, M. et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators.Nat. Nanotechnol.15, 462–468 (2020)..
Morad, V. et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation.J. Am. Chem. Soc.141, 9764–9768 (2019)..
Zhang, M. Y. et al. Oriented-structured CsCu2I3film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging.Nano Lett.21, 1392–1399 (2021)..
Zhu, W. J. et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators.Light Sci. Appl.9, 112 (2020)..
Hajagos, T. J. et al. High-Z sensitized plastic scintillators: a review.Adv. Mater.30, 1706956 (2018)..
Perego, J. et al. Composite fast scintillators based on high-Zfluorescent metal-organic framework nanocrystals.Nat. Photonics15, 393–400 (2021)..
Pan, W. C. et al. Cs2AgBiBr6single-crystal X-ray detectors with a low detection limit.Nat. Photonics11, 726–732 (2017)..
Wu, H. D. et al. Metal halide perovskites for X-ray detection and imaging.Matter4, 144–163 (2021)..
Yin, Y. D.&Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface.Nature437, 664–670 (2005)..
Troyano, J., Zamora, F.&Delgado, S. Copper(Ⅰ)-iodide cluster structures as functional and processable platform materials.Chem. Soc. Rev.50, 4606–4628 (2021)..
Hei, X. Z.&Li, J. All-in-one: a new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures.Chem. Sci.12, 3805–3817 (2021)..
Hei, X. Z. et al. Blending ionic and coordinate bonds in hybrid semiconductor materials: a general approach toward robust and solution-processable covalent/coordinate network structures.J. Am. Chem. Soc.142, 4242–4253 (2020)..
Yanagida, T. Inorganic scintillating materials and scintillation detectors.Proc. Jpn. Acad., Ser. B94, 75–97 (2018)..
Yanagida, T. et al. Fast and high light yield scintillation in the Ga2O3semiconductor material.Appl. Phys. Express9, 042601 (2016)..
Liu, W. et al. All-in-one: achieving robust, strongly luminescent and highly dispersible hybrid materials by combining ionic and coordinate bonds in molecular crystals.J. Am. Chem. Soc.139, 9281–9290 (2017)..
Ford, P. C., Cariati, E.&Bourassa, J. Photoluminescence properties of multinuclear copper(Ⅰ) compounds.Chem. Rev.99, 3625–3648 (1999)..
Cohen, A. J., Mori-Sánchez, P.&Yang, W. T. Challenges for density functional theory.Chem. Rev.112, 289–320 (2012)..
Li, M. H. et al. In-situ construction of novel naphthalenediimide/metal-iodide hybrid heterostructures for enhanced photoreduction of Cr (Ⅵ).Dyes Pigments187, 109146 (2021)..
Wang, J. J. et al. Highly luminescent copper iodide cluster based inks with photoluminescence quantum efficiency exceeding 98%.J. Am. Chem. Soc.142, 3686–3690 (2020)..
Xie, M. C. et al. Highly efficient sky blue electroluminescence from ligand-activated copper iodide clusters: overcoming the limitations of cluster light-emitting diode.Sci. Adv.5, eaav9857 (2019)..
Cheng, P. F. et al. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals.Angew. Chem. Int. Ed.58, 16087–16091 (2019)..
Berger, M. J. et al.XCOM: Photon Cross Sections Database(National Institute of Standards and Technology, 2013).https://www.nist.gov/pml/xcom-photon-cross-sections-databasehttps://www.nist.gov/pml/xcom-photon-cross-sections-database..
Cheng, S. L. et al. Zero-dimensional Cs3Cu2I5perovskite single crystalas sensitive X-ray and γ-ray scintillator.Phys. Status Solidi14, 2000374 (2020)..
Cheng, S. L. et al. Non-hygroscopic, self-absorption free, and efficient 1D CsCu2I3perovskite single crystal for radiation detection.ACS Appl. Mater. Interfaces13, 12198–12202 (2021)..
Wei, H. T. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals.Nat. Photonics10, 333–339 (2016)..
Hata, A. et al. Dynamic chest X-ray using a flat-panel detector system: technique and applications.Korean J. Radiol.22, 634–651 (2021)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution