1.Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
2.Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, USA
3.Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
Justus C. Ndukaife (justus.ndukaife@vanderbilt.edu)
Published:30 September 2023,
Published Online:28 July 2023,
Received:23 January 2023,
Revised:13 June 2023,
Accepted:17 June 2023
Scan QR Code
Yang, S. & Ndukaife, J. C. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. Light: Science & Applications, 12, 1771-1781 (2023).
Yang, S. & Ndukaife, J. C. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. Light: Science & Applications, 12, 1771-1781 (2023). DOI: 10.1038/s41377-023-01212-4.
Manipulating fluids by light at the micro/nanoscale has been a long-sought-after goal for lab-on-a-chip applications. Plasmonic heating has been demonstrated to control microfluidic dynamics due to the enhanced and confined light absorption from the intrinsic losses of metals. Dielectrics
the counterpart of metals
has been used to avoid undesired thermal effects due to its negligible light absorption. Here
we report an innovative optofluidic system that leverages a quasi-BIC-driven all-dielectric metasurface to achieve subwavelength scale control of temperature and fluid motion. Our experiments show that suspended particles down to 200 nanometers can be rapidly aggregated to the center of the illuminated metasurface with a velocity of tens of micrometers per second
and up to millimeter-scale particle transport is demonstrated. The strong electromagnetic field enhancement of the quasi-BIC resonance increases the flow velocity up to three times compared with the off-resonant situation by tuning the wavelength within several nanometers range. We also experimentally investigate the dynamics of particle aggregation with respect to laser wavelength and power. A physical model is presented and simulated to elucidate the phenomena and surfactants are added to the nanoparticle colloid to validate the model. Our study demonstrates the application of the recently emerged all-dielectric thermonanophotonics in dealing with functional liquids and opens new frontiers in harnessing non-plasmonic nanophotonics to manipulate microfluidic dynamics. Moreover
the synergistic effects of optofluidics and high-Q all-dielectric nanostructures hold enormous potential in high-sensitivity biosensing applications.
Iverson, B. D.&Garimella, S. V. Recent advances in microscale pumping technologies: a review and evaluation.Microfluidics Nanofluidics5, 145–174 (2008)..
Squires, T. M.&Quake, S. R. Microfluidics: fluid physics at the nanoliter scale.Rev. Mod. Phys.77, 977–1026 (2005)..
Chen, J. et al. Thermal optofluidics: principles and applications.Adv. Opt. Mater.8, 1900829 (2020)..
Liu, C. et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers.Nat. Biomed. Eng.3, 183–193 (2019)..
Flores-Flores, E. et al. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis.Biomed. Opt. Express6, 4079 (2015)..
Khurgin, J. B.&Boltasseva, A. Reflecting upon the losses in plasmonics and metamaterials.MRS Bull.37, 768–779 (2012)..
Zhang, Y. Q. et al. Plasmonic tweezers: for nanoscale optical trapping and beyond.Light Sci. Appl.10, 59 (2021)..
Baffou, G.&Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat.Laser Photonics Rev.7, 171–187 (2013)..
Baffou, G., Cichos, F.&Quidant, R. Applications and challenges of thermoplasmonics.Nat. Mater.19, 946–958 (2020)..
Hong, C. C. et al. Electrothermoplasmonic trapping and dynamic manipulation of single colloidal nanodiamond.Nano Lett.21, 4921–4927 (2021)..
Rastinehad, A. R. et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study.Proc. Natl Acad. Sci. USA116, 18590–18596 (2019)..
Timko, B. P., Dvir, T.&Kohane, D. S. Remotely triggerable drug delivery systems.Adv. Mater.22, 4925–4943 (2010)..
Neumann, O. et al. Solar vapor generation enabled by nanoparticles.ACS Nano7, 42–49 (2013)..
Baffou, G. et al. Photoinduced heating of nanoparticle arrays.ACS Nano7, 6478–6488 (2013)..
Donner, J. S. et al. Plasmon-assisted optofluidics.ACS Nano5, 5457–5462 (2011)..
Hong, C., Yang, S.&Ndukaife, J. C. Optofluidic control using plasmonic TiN bowtie nanoantenna [invited].Opt. Mater. Express9, 953–964 (2019)..
Roxworthy, B. J. et al. Understanding and controlling plasmon-induced convection.Nat. Commun.5, 3173, https://doi.org/10.1038/ncomms4173 (2014)..
Ciraulo, B. et al. Long-range optofluidic control with plasmon heating.Nat. Commun.12, 2001, https://doi.org/10.1038/s41467-021-22280-3 (2021)..
Li, M., Lohmüller, T.&Feldmann, J. Optical injection of gold nanoparticles into living cells.Nano Lett.15, 770–775 (2015)..
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures.Science354, eaag2472 (2016)..
Crozier, K. B. Quo vadis, plasmonic optical tweezers?Light Sci. Appl.8, 35 (2019)..
Xu, Z., Song, W. Z.&Crozier, K. B. Optical trapping of nanoparticles using all-silicon nanoantennas.ACS Photonics5, 4993–5001 (2018)..
Conteduca, D. et al. Exploring the limit of multiplexed near-field optical trapping.ACS Photonics8, 2060–2066 (2021)..
Hernández-Sarria, J. J., Oliveira, O. N. Jr&Mejía-Salazar, J. R. Toward lossless infrared optical trapping of small nanoparticles using nonradiative anapole modes.Phys. Rev. Lett.127, 186803 (2021)..
Hong, I. et al. Anapole-assisted near-field optical trapping. Proceedings of SPIE PC12198, Optical Trapping and Optical Micromanipulation XIX. San Diego, CA, USA: SPIE, 2022, PC121981E.
Zograf, G. P. et al. All-dielectric thermonanophotonics.Adv. Opt. Photonics13, 643 (2021)..
von Neumann, J.&Wigner, E. P. Über merkwürdige diskrete Eigenwerte.Physikalische Z.30, 465–467 (1929)..
Joseph, S. et al. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications.Nanophotonics10, 4175–4207 (2021)..
Chen, Z. H. et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors.Sci. Bull.67, 359–366 (2022)..
Kodigala, A. et al. Lasing action from photonic bound states in continuum.Nature541, 196–199 (2017)..
Huang, C. et al. Ultrafast control of vortex microlasers.Science367, 1018–1021 (2020)..
Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces.Science360, 1105–1109 (2018)..
Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces.Nat. Photonics13, 390–396 (2019)..
Leitis, A. et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval.Sci. Adv.5, eaaw2871 (2019)..
Jahani, Y. et al. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles.Nat. Commun.12, 3246 (2021)..
Yang, S. et al. Engineering electromagnetic field distribution and resonance quality factor using slotted Quasi-BIC metasurfaces.Nano Lett.22, 8060–8067 (2022)..
Liu, Z. J. et al. High-Qquasibound states in the continuum for nonlinear metasurfaces.Phys. Rev. Lett.123, 253901 (2019)..
Yoon, J. W., Song, S. H.&Magnusson, R. Critical field enhancement of asymptotic optical bound states in the continuum.Sci. Rep.5, 18301 (2015)..
Bochek, D. V. et al. Bound states in the continuum versus material losses: Ge2Sb2Te5as an example.Phys. Rev. B105, 165425 (2022)..
Yang, S. et al. Nanoparticle trapping in a quasi-BIC system.ACS Photonics8, 1961–1971 (2021)..
Yang, S. et al. Multiplexed long-range electrohydrodynamic transport and nano-optical trapping with cascaded bowtie photonic crystal nanobeams.Phys. Rev. Lett.130, 083802 (2023)..
Braun, D.&Libchaber, A. Trapping of DNA by thermophoretic depletion and convection.Phys. Rev. Lett.89, 188103 (2002)..
Bregulla, A. P. et al. Thermo-osmotic flow in thin films.Phys. Rev. Lett.116, 188303 (2016)..
Fränzl, M.&Cichos, F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows.Nat. Commun.13, 656 (2022)..
Crocker, J. C.&Grier, D. G. Methods of digital video microscopy for colloidal studies.J. Colloid Interface Sci.179, 298–310 (1996)..
Shi, Y. Z. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement.Nat. Commun.9, 815 (2018)..
Shi, Y. Z. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers.Sci. Adv.4, eaao0773 (2018)..
Jin, J. et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering.Nature574, 501–504 (2019)..
Piazza, R.&Parola, A. Thermophoresis in colloidal suspensions.J. Phys.: Condens. Matter20, 153102 (2008)..
Stoev, I. D. et al. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap.eLight1, 7 (2021)..
Lin, L. H. et al. Opto-thermoelectric nanotweezers.Nat. Photonics12, 195–201 (2018)..
Jiang, H. R. et al. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient.Phys. Rev. Lett.102, 208301 (2009)..
Maeda, Y. T., Buguin, A.&Libchaber, A. Thermal separation: interplay between the soret effect and entropic force gradient.Phys. Rev. Lett.107, 038301 (2011)..
Simon, D., Thalheim, T.&Cichos, F. Optical manipulation of single DNA molecules by depletion interactions. Proceedings of SPIE PC12198, Optical Trapping and Optical Micromanipulation XIX. San Diego, CA, USA: SPIE, 2022, PC121981C.
Lin, L. H. et al. Interfacial-entropy-driven thermophoretic tweezers.Lab a Chip17, 3061–3070 (2017)..
Braibanti, M., Vigolo, D.&Piazza, R. Does thermophoretic mobility depend on particle size?Phys. Rev. Lett.100, 108303 (2008)..
Bastos, D.&de las Nieves, F. J. On the zeta-potential of sulfonated polystyrene model colloids. Trends in Colloid and Interface Science Ⅶ. Heidelberg, Germany: Steinkopff, 37–44 (1993).
Lin, L. H. et al. Thermophoretic tweezers for low-power and versatile manipulation of biological cells.ACS Nano11, 3147–3154 (2017)..
Würger, A. Hydrodynamic boundary effects on thermophoresis of confined colloids.Phys. Rev. Lett.116, 138302 (2016)..
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution