1.Quantum Metrology and Nano Technology Division, INRiM, Strada delle Cacce 91, 10135 Torino, Italy
2.DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
3.Imaging Physics Department Optics Research Group, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, The Netherlands
Giuseppe Ortolano (g.ortolano@inrim.it)
Published:31 August 2023,
Published Online:11 July 2023,
Received:17 March 2023,
Revised:21 June 2023,
Accepted:23 June 2023
Scan QR Code
Ortolano, G. et al. Quantum enhanced non-interferometric quantitative phase imaging. Light: Science & Applications, 12, 1633-1643 (2023).
Ortolano, G. et al. Quantum enhanced non-interferometric quantitative phase imaging. Light: Science & Applications, 12, 1633-1643 (2023). DOI: 10.1038/s41377-023-01215-1.
Quantum entanglement and squeezing have significantly improved phase estimation and imaging in interferometric settings beyond the classical limits. However
for a wide class of non-interferometric phase imaging/retrieval methods vastly used in the classical domain
e.g.
ptychography and diffractive imaging
a demonstration of quantum advantage is still missing. Here
we fill this gap by exploiting entanglement to enhance imaging of a pure phase object in a non-interferometric setting
only measuring the phase effect on the free-propagating field. This method
based on the so-called "transport of intensity equation"
is quantitative since it provides the absolute value of the phase without prior knowledge of the object and operates in wide-field mode
so it does not need time-consuming raster scanning. Moreover
it does not require spatial and temporal coherence of the incident light. Besides a general improvement of the image quality at a fixed number of photons irradiated through the object
resulting in better discrimination of small details
we demonstrate a clear reduction of the uncertainty in the quantitative phase estimation. Although we provide an experimental demonstration of a specific scheme in the visible spectrum
this research also paves the way for applications at different wavelengths
e.g.
X-ray imaging
where reducing the photon dose is of utmost importance.
Ruo-Berchera, I.&Degiovanni, I. P. Quantum imaging with sub-poissonian light: challenges and perspectives in optical metrology.Metrologia56, 024001 (2019)..
Moreau, P. -A., Toninelli, E., Gregory, T.&Padgett, M. J. Imaging with quantum states of light.Nat. Rev. Phys.1, 367 (2019)..
Genovese, M. Real applications of quantum imaging.J. Opt.18, 073002 (2016)..
Degen, C. L., Reinhard, F.&Cappellaro, P. Quantum sensing.Rev. Mod. Phys.89, 035002 (2017)..
Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C.&Lloyd, S. Advances in photonic quantum sensing.Nat. Photon.12, 724 (2018)..
Petrini, G. et al. Is a quantum biosensing revolution approaching? perspectives in nv-assisted current and thermal biosensing in living cells.Adv. Quant. Technol.3, 2000066 (2020)..
Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light.Nat. Photon.7, 613 (2013)..
Pradyumna, S. T. et al. Twin beam quantum-enhanced correlated interferometry for testing fundamental physics.Commun. Phys.3, 104 (2020)..
Taylor, M. A.&Bowen, W. P. Quantum metrology and its application in biology.Phys. Rep.615, 1 (2016)..
Casacio, C., Madsen, L.&Terrasson, A. Quantum-enhanced nonlinear microscopy.Nature594, 201–206 (2021)..
Petrini, G. et al. Nanodiamond–quantum sensors reveal temperature variation associated to hippocampal neurons firing.Adv. Sci.9, 2202014 (2022)..
Schwartz, O.&Oron, D. Improved resolution in fluorescence microscopy using quantum correlations.Phys. Rev. A85, 033812 (2012)..
Gatto Monticone, D. et al. Beating the abbe diffraction limit in confocal microscopy via non-classical photon statistics.Phys. Rev. Lett.113, 143602 (2014)..
Samantaray, N., Ruo-Berchera, I., Meda, A.&Genovese, M. Realization of the first sub-shot-noise wide field microscope.Light Sci. Appl.6, e17005(2017)..
Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy.Nat. Photon.13, 116 (2019)..
Lawrie, B. J., Lett, P. D., Marino, A. M.&Pooser, R. C. Quantum sensing with squeezed light.ACS Photon.6, 1307 (2019)..
Lee, C. et al. Quantum plasmonic sensors.Chem. Rev.121, 4743 (2021)..
Polino, E., Valeri, M., Spagnolo, N.&Sciarrino, F. Photonic quantum metrology.AVS Quant. Sci.2, 024703 (2020)..
Demkowicz-Dobrzanski, R., Jarzyna, M.&Kolodynski, J. Quantum limits in optical interferometry.Prog. Opt.60, 345–435 (2015)..
Chekhova, M. V.&Ou, Z. Y. Nonlinear interferometers 698 in quantum optics.Adv. Opt. Photon.8, 104 (2016)..
Hudelist, F. et al. Quantum metrology with parametric amplifier-based photon correlation interferometers.Nat. Commun.5, 3049 (2014)..
Ono, T., Okamoto, R.&Takeuchi, S. Quantum entanglement-enhanced microscope.Nat. Commun.4, 2426 (2013)..
Israel, Y., Rosen, S.&Silberberg, Y. Supersensitive polarization microscopy using noon states of light.Phys. Rev. Lett.112, 103604 (2014)..
Caves, C. M. Quantum-mechanical noise in an interferometer.Phys. Rev. D.23, 1693 (1981)..
Xiao, M., Wu, L. -A.&Kimble, H. J. Precision measurement beyond the shot-noise limit.Phys. Rev. Lett.59, 278 (1987)..
Schnabel, R. Squeezed states of light and their applications in laser interferometers.Phys. Rep.684, 1 (2017)..
Gatto, D., Facchi, P.&Tamma, V. Heisenberg-limited estimation robust to photon losses in a mach-zehnder network with squeezed light.Phys. Rev. A105, 012607 (2022)..
Kalashnikov, D. A., Paterova, A. V., Kulik, S. P.&Krivitsky, L. A. Infrared spectroscopy with visible light.Nat. Photon.10, 98 (2016)..
Manceau, M., Leuchs, G., Khalili, F.&Chekhova, M. Detection loss tolerant supersensitive phase measurement with an SU(1, 1) interferometer.Phys. Rev. Lett.119, 223604 (2017)..
Frascella, G. et al. Wide-field SU(1, 1) interferometer.Optica6, 1233 (2019)..
Lemos, G. B. et al. Quantum imaging with undetected photons.Nature512, 409 (2014)..
Töpfer, S. et al. Quantum holography with undetected light.Sci. Adv.8, eabl4301 https://www.science.org/doi/pdf/10.1126/sciadv.abl4301 (2022)..
Camphausen, R. et al. A quantum-enhanced wide-field phase imager.Sci. Adv.7, eabj2155 https://www.science.org/doi/pdf/10.1126/sciadv.abj2155 (2021)..
Wolley, O. et al. Near single-photon imaging in the shortwave infrared using homodyne detection.Proc. Natl Acad. Sci. USA120, e2216678120 (2023)..
Gatti, A., Brambilla, E., Bache, M.&Lugiato, L. A. Correlated imaging, quantum and classical.Phys. Rev. A70, 013802 (2004)..
Strekalov, D. V., Sergienko, A. V., Klyshko, D. N.&Shih, Y. H. Observation of two-photon "ghost" interference and diffraction.Phys. Rev. Lett.74, 3600 (1995)..
Valencia, A., Scarcelli, G., D'Angelo, M.&Shih, Y. Two-photon imaging with thermal light.Phys. Rev. Lett.94, 063601 (2005)..
Zhang, D., Zhai, Y. -H., Wu, L. -A.&Chen, X. -H. Correlated two-photon imaging with true thermal light.Opt. Lett.30, 2354 (2005)..
Shapiro, J. H.&Boyd, R. W. The physics of ghost imaging.Quant. Inf. Process.11, 949 (2012)..
Meda, A. et al. Magneto-optical imaging technique for hostile environments: The ghost imaging approach.Appl. Phys. Lett.106, 262405, https://doi.org/10.1063/1.4923336 (2015)..
Vinu, R. V., Chen, Z., Singh, R. K.&Pu, J. Ghost diffraction holographic microscopy.Optica7, 1697 (2020)..
Devaux, F., Mosset, A., Bassignot, F.&Lantz, E. Quantum holography with biphotons of high Schmidt number.Phys. Rev. A99, 033854 (2019)..
Defienne, H., Ndagano, B., Lyons, A.&Faccio, D. Polarization entanglement-enabled quantum holography.Nat. Phys.17, 591 (2021)..
Aidukas, T., Konda, P. C., Harvey, A. R., Padgett, M. J.&Moreau, P. -A. Phase and amplitude imaging with quantum correlations through fourier ptychography.Sci. Rep.9, 10445 (2019)..
Hodgson, H., Zhang, Y., England, D.&Sussman, B. Reconfigurable phase contrast microscopy with correlated photon pairs.Appl. Phys. Lett.122, 034001, https://doi.org/10.1063/5.0133980 (2023)..
Erkmen, B. I.&Shapiro, J. H. Signal-to-noise ratio of gaussian-state ghost imaging.Phys. Rev. A79, 023833 (2009)..
Brida, G. et al. Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light.Phys. Rev. A83, 063807 (2011)..
Morris, P. A., Aspden, R. S., Bell, J. E. C., Boyd, R. W.&Padgett, M. J. Imaging with a small number of photons.Nat. Commun.6, 5913 (2015)..
Dixon, P. B. et al. Quantum ghost imaging through turbulence.Phys. Rev. A83, 051803 (2011)..
Bina, M. et al. Backscattering differential ghost imaging in turbid media.Phys. Rev. Lett.110, 083901 (2013)..
Teague, M. R. Deterministic phase retrieval: a Green's function solution.J. Opt. Soc. Am.73, 1434 (1983)..
Paganin, D.&Nugent, K. A. Noninterferometric phase imaging with partially coherent light.Phys. Rev. Lett.80, 2586 (1998)..
Zuo, C. et al. Transport of intensity equation: a tutorial.Opt. Lasers Eng.135, 106187 (2020)..
Brida, G., Genovese, M.&Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging.Nat. Photon.4, 227 (2010)..
Ruo-Berchera, I. et al. Improving resolution-sensitivity trade off in sub-shot noise quantum imaging.Appl. Phys. Lett.116, 214001, https://doi.org/10.1063/5.0009538 (2020)..
Ortolano, G., Ruo-Berchera, I.&Predazzi, E. Quantum enhanced imaging of nonuniform refractive profiles.Int. J. Quantum Inf.17, 1941010, https://doi.org/10.1142/S0219749919410107 (2019)..
Lu, C. -H., Reichert, M., Sun, X.&Fleischer, J. W. Quantum phase imaging using spatial entanglement.https://arxiv.org/abs/1509.01227https://arxiv.org/abs/1509.01227(2015).
Borodin, D., Schori, A., Zontone, F.&Shwartz, S. X-ray photon pairs with highly suppressed background.Phys. Rev. A94, 013843 (2016)..
Sofer, S., Strizhevsky, E., Schori, A., Tamasaku, K.&Shwartz, S. Quantum enhanced x-ray detection.Phys. Rev. X9, 031033 (2019)..
Moreau, P. -A. et al. Demonstrating an absolute quantum advantage in direct absorption measurement.Sci. Rep.7, 6256 (2017)..
Losero, E., Ruo-Berchera, I., Meda, A., Avella, A.&Genovese, M. Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams.Sci. Rep.8, 7431 (2018)..
Avella, A., Ruo-Berchera, I., Degiovanni, I. P., Brida, G.&Genovese, M. Absolute calibration of an emccd camera by quantum correlation, linking photon counting to the analog regime.Opt. Lett.41, 1841 (2016)..
Paganin, D., Barty, A., McMahon, P. J.&Nugent, K. A. Quantitative phase-amplitude microscopy. ⅲ. The effects of noise.J. Microsc.214, 51 (2004). https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.0022-2720.2004.01295.x..
Meda, A. et al. Photon-number correlation for quantum enhanced imaging and sensing.J. Opt.19, 09400 (2017)..
Khashan, M.&Nassif, A. Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3 µm.Opt. Commun.188, 129 (2001)..
Gunjala, G.&Waller, L.Open Source PhaseGUI(UC Berkeley, 2014).
Voelz, D. G.Computational Fourier Optics: a Matlab Tutorial(SPIE, 2011).https://doi.org/10.1117/3.858456https://doi.org/10.1117/3.858456..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution