1.Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
2.Department of Quantum Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
3.Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
4.SRON Netherlands Institute for Space Research, Niels Bohrweg 4, 2333 CA Leiden, The Netherlands
Jin Chang (J.Chang-1@tudelft.nl)
He-Xiu Xu (hxxuellen@gmail.com)
H. Paul Urbach (H.P.Urbach@tudelft.nl)
Published:31 August 2023,
Published Online:07 July 2023,
Received:02 February 2023,
Revised:22 May 2023,
Accepted:25 June 2023
Scan QR Code
Ji, W. Y. et al. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light: Science & Applications, 12, 1494-1509 (2023).
Ji, W. Y. et al. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light: Science & Applications, 12, 1494-1509 (2023). DOI: 10.1038/s41377-023-01218-y.
As a two-dimensional planar material with low depth profile
a metasurface can generate non-classical phase distributions for the transmitted and reflected electromagnetic waves at its interface. Thus
it offers more flexibility to control the wave front. A traditional metasurface design process mainly adopts the forward prediction algorithm
such as Finite Difference Time Domain
combined with manual parameter optimization. However
such methods are time-consuming
and it is difficult to keep the practical meta-atom spectrum being consistent with the ideal one. In addition
since the periodic boundary condition is used in the meta-atom design process
while the aperiodic condition is used in the array simulation
the coupling between neighboring meta-atoms leads to inevitable inaccuracy. In this review
representative intelligent methods for metasurface design are introduced and discussed
including machine learning
physics-information neural network
and topology optimization method. We elaborate on the principle of each approach
analyze their advantages and limitations
and discuss their potential applications. We also summarize recent advances in enabled metasurfaces for quantum optics applications. In short
this paper highlights a promising direction for intelligent metasurface designs and applications for future quantum optics research and serves as an up-to-date reference for researchers in the metasurface and metamaterial fields.
Cui, T. J. et al. Information entropy of coding metasurface.Light Sci. Appl.5, e16172 (2016)..
Wu, H. T. et al. Harmonic information transitions of spatiotemporal metasurfaces.Light Sci. Appl.9, 198 (2020)..
Bonod, N. Large-scale dielectric metasurfaces.Nat. Mater.14, 664–665 (2015)..
Wang, Z. et al. Integrated photonic metasystem for image classifications at telecommunication wavelength.Nat. Commun.13, 2131 (2022)..
Zhu, H. Z. et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling.Nat. Commun.12, 1805 (2021)..
Qiu, Y. C. et al. Fundamentals and applications of spin-decoupled Pancharatnam—Berry metasurfaces.Front. Optoelectronics14, 134–147 (2021)..
Fan, Z. B. et al. A broadband achromatic metalens array for integral imaging in the visible.Light Sci. Appl.8, 67 (2019)..
Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency.Nat. Nanotechnol.10, 308–312 (2015)..
Solntsev, A. S. et al. Metasurfaces for quantum photonics.Nat. Photonics15, 327–336 (2021)..
Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials.Science361, 1101–1104 (2018)..
Kan, Y. H. et al. Metasurface-enabled generation of circularly polarized single photons.Adv. Mater.32, 1907832 (2020)..
Saeidi, C. et al. Wideband plasmonic focusing metasurfaces.Appl. Phys. Lett.105, 053107 (2014)..
Aghanejad, I. et al. Design of high-gain lens antenna by gradient-index metamaterials using transformation optics.IEEE Trans. Antennas Propag.60, 4074–4081 (2012)..
Parimi, P. V. et al. Photonic crystals: imaging by flat lens using negative refraction.Nature426, 404 (2003)..
Zhang, N. et al. Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials.IEEE Trans. Antennas Propag.67, 1323–1328 (2019)..
Smith, D. R. et al. Gradientindex metamaterials.Phys. Rev. E71, 036609 (2005)..
Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission.Nat. Nanotechnol.10, 937–943 (2015)..
Faraji-Dana, M. S. et al. Compact folded metasurface spectrometer.Nat. Commun.9, 4196 (2018)..
Arbabi, A. et al. Planar metasurface retroreflector.Nat. Photonics11, 415–420 (2017)..
Zhang, S. AI empowered metasurfaces.Light Sci. Appl.9, 94 (2020)..
Zhang, X. Y. et al. Controlling angular dispersions in optical metasurfaces.Light Sci. Appl.9, 76 (2020)..
Chen, S. Q. et al. Empowered layer effects and prominent properties in few-layer metasurfaces.Adv. Opt. Mater.7, 1801477 (2019)..
Jiang, Q. et al. When metasurface meets hologram: principle and advances.Adv. Opt. Photonics11, 518–576 (2019)..
Xu, H. X. et al. Polarization-insensitive 3D conformal-skin metasurface cloak.Light Sci. Appl.10, 75 (2021)..
McClung, A. et al. At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces.Light Sci. Appl.9, 93 (2020)..
Sun, S. L. et al. Electromagnetic metasurfaces: physics and applications.Adv. Opt. Photonics11, 380–479 (2019)..
Xu, H. X. et al. Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization.Adv. Opt. Mater.7, 1801479 (2019)..
Deng, L. G. et al. Malus-metasurface-assisted polarization multiplexing.Light Sci. Appl.9, 101 (2020)..
Yuan, F. et al. RCS reduction based on concave/convex-chessboard random parabolic-phased metasurface.IEEE Trans. Antennas Propag.68, 2463–2468 (2020)..
Xie, P. et al. Wideband RCS reduction of high gain Fabry-Perot antenna employing a receiver-transmitter metasurface.Prog. Electromagn. Res.169, 103–115 (2020)..
Chen, S. Q. et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics.Adv. Opt. Mater.6, 1800104 (2018)..
Wang, C. et al. Superscattering of light in refractive-index near-zero environments.Prog. Electromagn. Res.168, 15–23 (2020)..
Xu, H. X. et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation.Light Sci. Appl.8, 3 (2019)..
He, S. L. et al. High performance UHF RFID tag antennas on liquid-filled bottles.Prog. Electromagn. Res.165, 83–92 (2019)..
Cheng, Y. Z., Li, W. Y.&Mao, X. S. Triple-band polarization angle independent 90° polarization rotator based on Fermat's spiral structure planar chiral metamaterial.Prog. Electromagn. Res.165, 35–45 (2019)..
Cai, T. et al. Ultrawideband chromatic aberration-free meta-mirrors.Adv. Photonics3, 016001 (2020)..
Xu, H. X. et al. Deterministic approach to achieve full-polarization cloak.Research2021, 6382172 (2021)..
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science334, 333–337 (2011)..
Yu, N. F. et al. Flat optics with designer metasurfaces.Nat. Mater.13, 139–150 (2014)..
Zhang, K. et al. A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces.Appl. Sci.10, 1015 (2020)..
Bao, Y. J. et al. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams.Adv. Mater.32, 1905659 (2020)..
Khaidarov, E. et al. Control of LED emission with functional dielectric metasurfaces.Laser Photonics Rev.14, 1900235 (2020)..
Zhang, C. B. et al. Helicity-dependent multifunctional metasurfaces for full-space wave control.Adv. Opt. Mater.8, 1901719 (2020)..
Wang, L. et al. Ultrasmall optical vortex knots generated by spin-selective metasurface holograms.Adv. Opt. Mater.7, 1900263 (2019)..
Lu, C. C. et al. Topological rainbow concentrator based on synthetic dimension.Phys. Rev. Lett.126, 113902 (2021)..
Chaplain, G. J. et al. Topological rainbow trapping for elastic energy harvesting in graded su-schrieffer-heeger systems.Phys. Rev. Appl.14, 054035 (2020)..
Jiménez, N. et al. Rainbow-trapping absorbers: broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems.Sci. Rep.7, 13595 (2017)..
Tsakmakidis, K. L. et al. Ultraslow waves on the nanoscale.Science358, eaan5196 (2017)..
Tsakmakidis, K. L., Boardman, A. D.&Hess, O. Trapped rainbow' storage of light in metamaterials.Nature450, 397–401 (2007)..
Presutti, F.&Monticone, F. Focusing on bandwidth: achromatic metalens limits.Optica7, 624–631 (2020)..
Ji, W. Y. et al. High-efficiency and ultra-broadband asymmetric transmission metasurface based on topologically coding optimization method.Opt. Express27, 2844–2854 (2019)..
Aieta, F. et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation.Science347, 1342–1345 (2015)..
Yang, J. et al. Broadband planar achromatic anomalous reflector based on dispersion engineering of spoof surface plasmon polariton.Appl. Phys. Lett.109, 211901 (2016)..
Yang, J. et al. 2D achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons: broadband and profile-robust.J. Phys. D Appl. Phys.51, 045108 (2018)..
Fathnan, A. et al. Achromatic Huygens' metalenses with deeply subwavelength thickness.Adv. Opt. Mater.8, 2000754 (2020)..
Li, H. P. et al. Phase- and amplitude-control metasurfaces for antenna main-lobe and sidelobe manipulations.IEEE Trans. Antennas Propag.66, 5121–5129 (2018)..
Cai, T. et al. High-performance bifunctional metasurfaces in transmission and reflection geometries.Adv. Opt. Mater.5, 1600506 (2017)..
Cai, T. et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces.Phys. Rev. Appl.8, 034033 (2017)..
Ni, X. J. et al. Broadband light bending withplasmonic nanoantennas.Science335, 427 (2011)..
Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves.Nat. Mater.11, 426–431 (2012)..
Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light.Nat. Commun.3, 1198 (2012)..
Pfeiffer, C. et al. A. Metamaterial Huygens' surfaces: tailoring wavefronts with reflectionless sheets.Phys. Rev. Lett.110, 197401 (2013)..
Chu, H. C. et al. Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces.Nat. Commun.12, 4523 (2021)..
Fan, H. Y. et al. Brewster metasurfaces for ultrabroadband reflectionless absorption at grazing incidence.Optica9, 1138–1148 (2022)..
Luo, J. et al. Ultra-broadband reflectionless Brewster absorber protected by reciprocity.Light Sci. Appl.10, 89 (2021)..
Chu, H. C. et al. Diffuse reflection and reciprocity-protected transmission via a random-flip metasurface.Sci. Adv.7, eabj0935 (2021)..
Chen, Y. Y. et al. Physics-informed neural networks for inverse problems in nano-optics and metamaterials.Opt. Express28, 11618–11633 (2020)..
Khatib, O. et al. Learning the physics of all‐dielectric metamaterials with deep Lorentz neural networks.Adv. Opt. Mater.10, 2200097 (2022)..
Jiang, L. et al. Neural network enabled metasurface design for phase manipulation.Opt. Express29, 2521–2528 (2021)..
An, S. et al. A deep learning approach for objective-driven all-dielectric metasurface design.ACS Photonics6, 3196–3207 (2019)..
Colburn, S. et al. A. Inverse design and flexible parameterization of meta-optics using algorithmic differentiation.Commun. Phys.4, 65 (2021)..
Rumpf, R. C. Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention.Progr. Electromagn. Res. B35, 241–261 (2011)..
Huang, M. et al. Machine–learning-enabled metasurface for direction of arrival estimation.Nanophotonics11, 2001–2010 (2022)..
Koziel, S. et al. Machine-learning-powered EM-based framework for efficient and reliable design of low scattering metasurfaces.IEEE Trans. Microwave Theory Tech.69, 2028–2041 (2021)..
Naseri, P. et al. A generative machine learning-based approach for inverse design of multilayer metasurfaces.IEEE Trans. Antennas Propag.69, 5725–5739 (2021)..
Zhang, Q. et al. Machine‐learning designs of anisotropic digital coding metasurfaces.Adv. Theory Simul.2, 1800132 (2019)..
Ma, W. et al. Pushing the limits of functionality‐multiplexing capability in metasurface design based on statistical machine learning.Adv. Mater.34, 2110022 (2022)..
Lin, H. et al. Machine-learning-assisted inverse design of scattering enhanced metasurface.Opt. Express30, 3076–3088 (2022)..
Tang, Y. H. et al. Physics-informed recurrent neural network for time dynamics in optical resonances.Nat. Comput. Sci.2, 169–178 (2022)..
Chen, Z. et al. Physics-informed learning of governing equations from scarce data.Nat. Commun.12, 6136 (2021)..
Ma, W. et al. Deep learning for the design of photonic structures.Nat. Photonics15, 77–90 (2021)..
Jenkins, R. P. et al. Establishing exhaustive metasurface robustness against fabrication uncertainties through deep learning.Nanophotonics10, 4497–4509 (2021)..
Chen, Y. Y. et al. Physics-informed neural networks for imaging and parameter retrieval of photonic nanostructures from near-field data.APL Photonics7, 010802 (2022)..
Lin, Z. et al. Topology optimization of freeform large-area metasurfaces.Opt. Express27, 15765–15775 (2019)..
Phan, T. et al. High-efficiency, large-area, topology-optimized metasurfaces.Light Sci. Appl.8, 48 (2019)..
Yang, J. J. et al. Topology-optimized metasurfaces: impact of initial geometric layout.Opt. Lett.42, 3161–3164 (2017)..
Wang, E. W. et al. Robust design of topology-optimized metasurfaces.Opt. Mater. Express9, 469–482 (2019)..
Lin, Z. et al. Overlapping domains for topology optimization of large-area metasurfaces.Opt. Express27, 32445–32453 (2019)..
Xu, M. F. et al. Topology-optimized catenary-like metasurface for wide-angle and high-efficiency deflection: from a discrete to continuous geometric phase.Opt. Express29, 10181–10191 (2021)..
Shaltout, A. M. et al. Spatiotemporal light control with active metasurfaces.Science364, eaat3100 (2019)..
Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction.Science361, 1104–1108 (2018)..
Georgi, P. et al. Metasurface interferometry toward quantum sensors.Light Sci. Appl.8, 70 (2019)..
Zhou, J. X. et al. Metasurface enabled quantum edge detection.Sci. Adv.6, eabc4385 (2020)..
Gao, Y. J. et al. Multichannel distribution and transformation of entangled photons with dielectric metasurfaces.Phys. Rev. Lett.129, 023601 (2022)..
Guo, J. et al. Active-feedback quantum control of an integrated, low-frequency mechanical resonator. Preprint athttps://arxiv.org/abs/2304.02799https://arxiv.org/abs/2304.02799(2023).
Raissi, M., Perdikaris, P.&Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.J. Comput. Phys.378, 686–707 (2019)..
Ghorbani, F. et al. Deep neural network-based automatic metasurface design with a wide frequency range.Sci. Rep.11, 7102 (2021)..
Shi, X. et al. Metasurface inverse design using machine learning approaches.J. Phys. D Appl. Phys.53, 275105 (2020)..
Lin, Z. et al. Topology-optimized multilayered metaoptics.Phys. Rev. Appl.9, 044030 (2018)..
Cheng, G. et al. Topology optimization of the azimuth-rotation-independent polarization conversion metasurface for bandwidth enhancement.Opt. Express30, 41340–41349 (2022)..
Chang, J. et al. Detecting telecom single photons with 99.5− 2.07+ 0.5% system detection efficiency and high time resolution.APL Photonics6, 036114 (2021)..
Borel, P. I. et al. Topology optimization and fabrication of photonic crystal structures.Opt. Express12, 1996–2001 (2004)..
Swartz, K. E. et al. Topology optimization of 3D photonic crystals with complete bandgaps.Opt. Express29, 22170–22191 (2021)..
Yan, Y. et al. Photonic crystal topological design for polarized and polarization-independent band gaps by gradient-free topology optimization.Opt. Express29, 24861–24883 (2021)..
Christiansen, R. E. et al. Designing photonic topological insulators with quantum-spin-Hall edge states using topology optimization.Nanophotonics8, 1363–1369 (2019)..
Jensen, J. S. et al. Topology optimization for nano‐photonics.Laser Photonics Rev.5, 308–321 (2011)..
Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities.Nat. Commun.13, 6281 (2022)..
Lin, Z. et al. Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion.Opt. Lett.42, 2818–2821 (2017)..
Wang, F. W. et al. Maximizing the quality factor to mode volume ratio for ultra-small photonic crystal cavities.Appl. Phys. Lett.113, 241101 (2018)..
Liang, X. D. et al. Formulation for scalable optimization of microcavities via the frequency-averaged local density of states.Opt. Express21, 30812–30841 (2013)..
Hammond, A. M. et al. Phase-injected topology optimization for scalable and interferometrically robust photonic integrated circuits.ACS Photonics10, 808–814 (2023)..
Watanabe, Y. et al. Broadband waveguide intersection with low-crosstalk in two-dimensional photonic crystal circuits by using topology optimization.Opt. Express14, 9502–9507 (2006)..
Lebbe, N. et al. Robust shape and topology optimization of nanophotonic devices using the level set method.J. Comput. Phys.395, 710–746 (2019)..
Yasui, T. et al. Design of three-dimensional optical circuit devices by using topology optimization method with function-expansion-based refractive index distribution.J. Lightwave Technol.31, 3765–3770 (2013)..
Chang, J. et al. Nanowire-based integrated photonics for quantum information and quantum sensing.Nanophotonics12, 339–358 (2023)..
Gu, T. et al. Reconfigurable metasurfaces towards commercial success.Nat. Photonics17, 48–58 (2023)..
Gan, Y. et al. Low noise MgB2hot electron bolometer mixer operated at 5.3 THz and at 20 K.Appl. Phys. Lett.119, 202601 (2021)..
Neshev, D. N. et al. Enabling smart vision with metasurfaces.Nat. Photonics17, 26–35 (2023)..
Zhang, S. Y. et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective.Nanophotonics10, 259–293 (2020)..
Song, N. T. et al. Broadband achromatic and polarization insensitive focused optical vortex generator based on metasurface consisting of anisotropic nanostructures.Front. Phys.10, 846718 (2022)..
Ji, W. Y. et al. Three-dimensional ultra-broadband absorber based on novel zigzag-shaped structure.Opt. Express27, 32835–32845 (2019)..
Wang, S. M. et al. Broadband achromatic optical metasurface devices.Nat. Commun.8, 187 (2017)..
Ji, W. Y. et al. Highly efficient and broadband achromatic transmission metasurface to refract and focus in microwave region.Laser Photonics Rev.16, 2100333 (2022)..
Zhao, H. T. et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals.Nat. Commun.11, 3926 (2020)..
Wan, X. et al. Joint radar and communication empowered by digital programmable metasurface.Adv. Intell. Syst.4, 2200083 (2022)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution