1.Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
2.Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
3.International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
Kausik Majumdar (kausikm@iisc.ac.in)
Published:31 August 2023,
Published Online:13 July 2023,
Received:11 February 2023,
Revised:16 June 2023,
Accepted:27 June 2023
Scan QR Code
Gupta, P. et al. Observation of ~100% valley-coherent excitons in monolayer MoS2 through giant enhancement of valley coherence time. Light: Science & Applications, 12, 1644-1650 (2023).
Gupta, P. et al. Observation of ~100% valley-coherent excitons in monolayer MoS2 through giant enhancement of valley coherence time. Light: Science & Applications, 12, 1644-1650 (2023). DOI: 10.1038/s41377-023-01220-4.
In monolayer transition metal dichalcogenide semiconductors
valley coherence degrades rapidly due to a combination of fast scattering and inter-valley exchange interaction. This leads to a sub-picosecond valley coherence time
making coherent manipulation of exciton a highly challenging task. Using monolayer MoS
2
sandwiched between top and bottom graphene
here we demonstrate fully valley-coherent excitons by observing ~100% degree of linear polarization in steady state photoluminescence. This is achieved in this unique design through a combined effect of (a) suppression in exchange interaction due to enhanced dielectric screening
(b) reduction in exciton lifetime due to a fast inter-layer transfer to graphene
and (c) operating in the motional narrowing regime. We disentangle the role of the key parameters affecting valley coherence by using a combination of calculation (solutions of Bethe-Salpeter and Maialle-Silva-Sham equations) and a careful choice of design of experiments using four different stacks with systematic variation of screening and exciton lifetime. To the best of our knowledge
this is the first report in which the excitons are found to be valley coherent in the entire lifetime in monolayer semiconductors
allowing optical readout of valley coherence possible.
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2.Phys. Rev. Lett.113, 076802 (2014)..
Hill, H. M. et al. Observation of excitonic Rydberg states in monolayer MoS2and WS2by photoluminescence excitation spectroscopy.Nano Lett.15, 2992–2997 (2015)..
Ye, Z. L. et al. Probing excitonic dark states in single-layer tungsten disulphide.Nature513, 214–218 (2014)..
Mak, K. F. et al. Control of valley polarization in monolayer MoS2by optical helicity.Nat. Nanotechnol.7, 494–498 (2012)..
Zeng, H. L. et al. Valley polarization in MoS2monolayers by optical pumping.Nat. Nanotechnol.7, 490–493 (2012)..
Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide.Nat. Commun.3, 887 (2012)..
Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2.Phys. Rev. Lett.112, 047401 (2014)..
Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2.Nat. Nanotechnol.8, 634–638 (2013)..
Kallatt, S., Umesh, G.&Majumdar, K. Valley-coherent hot carriers and thermal relaxation in monolayer transition metal dichalcogenides.J. Phys. Chem. Lett.7, 2032–2038 (2016)..
Maialle, M. Z., De Andrada, E., Silva, E. A.&Sham, L. J. Exciton spin dynamics in quantum wells.Phys. Rev. B47, 15776–15788 (1993)..
Yu, T.&Wu, M. W. Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2.Phys. Rev. B89, 205303 (2014)..
Hao, K. et al. Direct measurement of exciton valley coherence in monolayer WSe2.Nat. Phys.12, 677–682 (2016)..
Hao, K. et al. Trion valley coherence in monolayer semiconductors.2D Mater.4, 025105 (2017)..
Schmidt, R. et al. Magnetic-field-induced rotation of polarized light emission from monolayer WS2.Phys. Rev. Lett.117, 077402 (2016)..
Ye, Z. L., Sun, D. Z.&Heinz, T. F. Optical manipulation of valley pseudospin.Nat. Phys.13, 26–29 (2017)..
Wang, G. et al. Control of exciton valley coherence in transition metal dichalcogenide monolayers.Phys. Rev. Lett.117, 187401 (2016)..
Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor.Nat. Commun.9, 4797 (2018)..
Palummo, M., Bernardi, M.&Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.Nano Lett.15, 2794–2800 (2015)..
Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers.Phys. Rev. B93, 205423 (2016)..
Gupta, G.&Majumdar, K. Fundamental exciton linewidth broadening in monolayer transition metal dichalcogenides.Phys. Rev. B99, 085412 (2019)..
Lorchat, E. et al. Room-temperature valley polarization and coherence in transition metal dichalcogenide-Graphene van der Waals heterostructures.ACS Photonics5, 5047–5054 (2018)..
Lorchat, E. et al. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene.Nat. Nanotechnol.15, 283–288 (2020)..
Zhu, B. R. et al. Anomalously robust valley polarization and valley coherence in bilayer WS2.Proc. Natl Acad. Sci. USA111, 11606–11611 (2014)..
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials.Nat. Commun.8, 15251 (2017)..
Chen, S. Y. et al. Superior valley polarization and coherence of 2sexcitons in monolayer WSe2.Phys. Rev. Lett.120, 046402 (2018)..
Wu, F. C., Qu, F. Y.&MacDonald, A. H. Exciton band structure of monolayer MoS2.Phys. Rev. B91, 75310 (2015)..
Yu, H. Y. et al. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides.Nat. Commun.5, 3876 (2014)..
Lin, Y. X. et al. Dielectric screening of excitons and trions in single-layer MoS2.Nano Lett.14, 5569–5576 (2014)..
Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor.Nat. Mater.13, 1091–1095 (2014)..
Gupta, G., Kallatt, S.&Majumdar, K. Direct observation of giant binding energy modulation of exciton complexes in monolayer MoSe2.Phys. Rev. B96, 081403 (2017)..
Van Tuan, D., Yang, M.&Dery, H. Coulomb interaction in monolayer transition-metal dichalcogenides.Phys. Rev. B98, 125308 (2018)..
Becker, W. Advanced Time-Correlated Single Photon Counting Techniques. (Berlin, Heidelberg: Springer, 2005).
Ferrante, C. et al. Picosecond energy transfer in a transition metal dichalcogenide-graphene heterostructure revealed by transient Raman spectroscopy.Proc. Natl Acad. Sci. USA119, e2119726119 (2022)..
Berthelot, A. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot.Nat. Phys.2, 759–764 (2006)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution