1.Institute for Energy Efficiency, University of California, Santa Barbara, CA, USA
2.Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
3.Present address: Primary Length and Laser Technology Lab, National Institute of Standards, Giza, Egypt
Bozhang Dong (bdong@ucsb.edu)
John E. Bowers (bowers@ece.ucsb.edu)
Published:31 August 2023,
Published Online:25 July 2023,
Received:12 April 2023,
Revised:06 July 2023,
Accepted:09 July 2023
Scan QR Code
Dong, B. Z. et al. Broadband quantum-dot frequency-modulated comb laser. Light: Science & Applications, 12, 1696-1707 (2023).
Dong, B. Z. et al. Broadband quantum-dot frequency-modulated comb laser. Light: Science & Applications, 12, 1696-1707 (2023). DOI: 10.1038/s41377-023-01225-z.
Frequency-modulated (FM) laser combs
which offer a quasi-continuous-wave output and a flat-topped optical spectrum
are emerging as a promising solution for wavelength-division multiplexing applications
precision metrology
and ultrafast optical ranging. The generation of FM combs relies on spatial hole burning
group velocity dispersion
Kerr nonlinearity
and four-wave mixing (FWM). While FM combs have been widely observed in quantum cascade Fabry-Perot (FP) lasers
the requirement for a low-dispersion FP cavity can be a challenge in platforms where the waveguide dispersion is mainly determined by the material. Here we report a 60 GHz quantum-dot (QD) mode-locked laser in which both the amplitude-modulated (AM) and the FM comb can be generated independently. The high FWM efficiency of –5 dB allows the QD laser to generate FM comb efficiently. We also demonstrate that the Kerr nonlinearity can be practically engineered to improve the FM comb bandwidth without the need for GVD engineering. The maximum 3-dB bandwidth that our QD platform can deliver is as large as 2.2 THz. This study gives novel insights into the improvement of FM combs and paves the way for small-footprint
electrically pumped
and energy-efficient frequency combs for silicon photonic integrated circuits (PICs).
Picqué, N.&Hänsch, T. W. Frequency comb spectroscopy.Nat. Photon.13, 146–157 (2019)..
Terra, O. Absolute frequency measurement of the hyperfine structure of the 5S1/2–5D3/2two-photon transition in rubidium using femtosecond frequency comb.Measurement144, 83–87 (2019)..
Yu, M. J. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy.Nat. Commun.9, 1869 (2018)..
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics.Nature557, 81–85 (2018)..
Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source.Nat. Commun.11, 2568 (2020)..
Diddams, S. A., Vahala, K.&Udem, T. Optical frequency combs: Coherently uniting the electromagnetic spectrum.Science369, eaay3676 (2020)..
Chang, L., Liu, S. T.&Bowers, J. E. Integrated optical frequency comb technologies.Nat. Photon.16, 95–108 (2022)..
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb.Nature581, 164–170 (2020)..
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core.Nature589, 52–58 (2021)..
De Cea, M., Atabaki, A. H.&Ram, R. J. Power handling of silicon microring modulators.Opt. Express27, 24274–24285 (2019)..
Calò, C. et al. Single-section quantum well mode-locked laser for 400 Gb/s SSB-OFDM transmission.Opt. Express23, 26442–26449 (2015)..
Dong, M., Cundiff, S. T.&Winful, H. G. Physics of frequency-modulated comb generation in quantum-well diode lasers.Phys. Rev. A97, 053822 (2018)..
Rosales, R. et al. High performance mode locking characteristics of single section quantum dash lasers.Opt. Express20, 8649–8657 (2012)..
Gioannini, M., Bardella, P.&Montrosset, I. Time-domain traveling-wave analysis of the multimode dynamics of quantum dot Fabry–Perot lasers.IEEE J. Sel. Top. Quant. Electron.21, 698–708 (2015)..
Hugi, A. et al. Mid-infrared frequency comb based on a quantum cascade laser.Nature492, 229–233 (2012)..
Hillbrand, J. et al. Coherent injection locking of quantum cascade laser frequency combs.Nat. Photon.13, 101–104 (2019)..
Schwarz, B. et al. Monolithic frequency comb platform based on interband cascade lasers and detectors.Optica6, 890–895 (2019)..
Hillbrand, J. et al. In-phase and anti-phase synchronization in a laser frequency comb.Phys. Rev. Lett.124, 023901 (2020)..
Borri, P. et al. Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers.IEEE J. Sel. Top. Quant. Electron.6, 544–551 (2000)..
Shang, C. et al. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits.ACS Photon.8, 2555–2566 (2021)..
Grillot, F. et al. Uncovering recent progress in nanostructured light-emitters for information and communication technologies.Light Sci. Appl.10, 156 (2021)..
Dong, B. Z. et al. Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long-and short-cavity feedback conditions for photonic integrated circuits.Phys. Rev. A103, 033509 (2021)..
Wan, Y. T. et al. High speed evanescent quantum-dot lasers on Si.Laser Photon. Rev.15, 2100057 (2021)..
Shang, C. et al. Electrically pumped quantum-dot lasers grown on 300mm patterned Si photonic wafers.Light Sci. Appl.11, 299 (2022)..
Liu, S. T. et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity.Optica6, 128–134 (2019)..
Pan, S. J. et al. Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20 ℃ and 120 ℃.Photon. Res.8, 1937–1942 (2020)..
Huang, J. Z. et al. Ultra-broadband flat-top quantum dot comb lasers.Photon. Res.10, 1308–1316 (2022)..
Liang, D. et al. An energy-efficient and bandwidth-scalable DWDM heterogeneous silicon photonics integration platform.IEEE J. Sel. Top. Quant. Electron.28, 6100819 (2022)..
Gordon, A. et al. Multimode regimes in quantum cascade lasers: from coherent instabilities to spatial hole burning.Phys. Rev. A77, 053804 (2008)..
Jiao, Z. J. et al. Modeling of single-section quantum dot mode-locked lasers: Impact of group velocity dispersion and self phase modulation.IEEE J. Quant. Electron.49, 1008–1015 (2013)..
Osinski, M.&Buus, J. Linewidth broadening factor in semiconductor lasers–an overview.IEEE J. Quant. Electron.23, 9–29 (1987)..
Dong, B. Z. et al. Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection.Opt. Lett.44, 5755–5758 (2019)..
Dong, B. Z. et al. 1.3-μm passively mode-locked quantum dot lasers epitaxially grown on silicon: gain properties and optical feedback stabilization.J. Phys. Photon.2, 045006 (2020)..
Bardella, P., Columbo, L. L.&Gioannini, M. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study.Opt. Express25, 26234–26252 (2017)..
Opačak, N. et al. Spectrally resolved linewidth enhancement factor of a semiconductor frequency comb.Optica8, 1227–1230 (2021)..
Opačak, N.&Schwarz, B. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity.Phys. Rev. Lett.123, 243902 (2019)..
Fujii, S.&Tanabe, T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation.Nanophotonics9, 1087–1104 (2020)..
Mansuripur, T. S. et al. Single-mode instability in standing-wave lasers: The quantum cascade laser as a self-pumped parametric oscillator.Phys. Rev. A94, 063807 (2016)..
Chow, W. W. et al. Multimode description of self-mode locking in a single-section quantum-dot laser.Opt. Express28, 5317–5330 (2020)..
Nielsen, D.&Chuang, S. L. Four-wave mixing and wavelength conversion in quantum dots.Phys. Rev. B81, 035305 (2010)..
Duan, J. N. et al. Four-wave mixing in 1.3 μm epitaxial quantum dot lasers directly grown on silicon.Photon. Res.10, 05001264 (2022)..
Lu, Z. G. et al. Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers.Opt. Commun.284, 2323–2326 (2011)..
Lu, Z. G. et al. InAs/InP quantum dash semiconductor coherent comb lasers and their applications in optical networks.J. Lightwave Technol.39, 3751–3760 (2021)..
Verolet, T. et al. Mode locked laser phase noise reduction under optical feedback for coherent DWDM communication.J. Lightwave Technol.38, 5708–5715 (2020)..
Liu, S. et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si.Electron. Lett.54, 432–433 (2018)..
Kurczveil, G. et al. On-chip hybrid silicon quantum dot comb laser with 14 error-free channels.2018 IEEE International Semiconductor Laser Conference (ISLC). Santa Fe, NM, USA. 1–2 (IEEE, 2018).
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Qmicroresonators.Nat. Photon.15, 346–353 (2021)..
Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon.Science373, 99–103 (2021)..
Kemal, J. N. et al. 32QAM WDM transmission at 12 Tbit/s using a quantum-dash mode-locked laser diode (QD-MLLD) with external-cavity feedback.Opt. Express28, 23594–23608 (2020)..
Liu, G. C. et al. Mode-locking and noise characteristics of InAs/InP quantum dash/dot lasers.J. Lightwave Technol. https://doi.org/10.1109/JLT.2023.3244777 (2023).
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution