1.Sichuan THz Communication Technology Engineering Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2.Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
3.Zhangjiang Laboratory, Shanghai 201204, China
4.National Key Laboratory of Solid-State Microwave Devices and Circuits, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
5.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
6.University of Chinese Academy of Sciences, School of Electronic, Electrical and Communication Engineering, Beijing 101408, China
7.Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
8.School of Engineering, Brown University, Providence, RI 02912, USA
Hongxin Zeng (zenghx@uestc.edu.cn)
Yaxin Zhang (zhangyaxin@uestc.edu.cn)
Daniel M. Mittleman (daniel_mittleman@brown.edu)
Published:30 September 2023,
Published Online:07 August 2023,
Received:09 February 2023,
Revised:03 July 2023,
Accepted:11 July 2023
Scan QR Code
Lan, F. et al. Real-time programmable metasurface for terahertz multifunctional wave front engineering. Light: Science & Applications, 12, 1795-1806 (2023).
Lan, F. et al. Real-time programmable metasurface for terahertz multifunctional wave front engineering. Light: Science & Applications, 12, 1795-1806 (2023). DOI: 10.1038/s41377-023-01228-w.
Terahertz (THz) technologies have become a focus of research in recent years due to their prominent role in envisioned future communication and sensing systems. One of the key challenges facing the field is the need for tools to enable agile engineering of THz wave fronts. Here
we describe a reconfigurable metasurface based on GaN technology with an array-of-subarrays architecture. This subwavelength-spaced array
under the control of a 1-bit digital coding sequence
can switch between an enormous range of possible configurations
providing facile access to nearly arbitrary wave front control for signals near 0.34 THz. We demonstrate wide-angle beam scanning with 1° of angular precision over 70 GHz of bandwidth
as well as the generation of multi-beam and diffuse wave fronts
with a switching speed up to 100 MHz. This device
offering the ability to rapidly reconfigure a propagating wave front for beam-forming or diffusively scattered wide-angle coverage of a scene
will open new realms of possibilities in sensing
imaging
and networking.
Kürner, T.&Priebe, S. Towards THz communications—status in research, standardization and regulation.J. Infrared Millim. Terahertz Waves35, 53–62 (2014)..
Koenig, S. et al. Wireless sub-THz communication system with high data rate.Nat. Photonics7, 977–981 (2013)..
Federici, J. F. et al. THz imaging and sensing for security applications—explosives, weapons and drugs.Semicond. Sci. Technol.20, S266–S280 (2005)..
Cooper, K. B. et al. THz imaging radar for standoff personnel screening.IEEE Trans. Terahertz Sci. Technol.1, 169–182 (2011)..
Fischer, B. M., Helm, H.&Jepsen, P. U. Chemical recognition with broadband THz spectroscopy.Proc. IEEE95, 1592–1604 (2007)..
Wang, Q., Xie, L. J.&Ying, Y. B. Overview of imaging methods based on terahertz time-domain spectroscopy.Appl. Spectrosc. Rev.57, 249–264 (2022)..
Yang, X. et al. Biomedical applications of terahertz spectroscopy and imaging.Trends Biotechnol.34, 810–824 (2016)..
Huang, C. W. et al. Hybrid beamforming for RIS-empowered multi-hop terahertz communications: a DRL-based method. In2020 IEEE Globecom Workshops(GC Wkshps, IEEE, 2020).
Han, C., Yan, L. F.&Yuan, J. H. Hybrid beamforming for terahertz wireless communications: challenges, architectures, and open problems.IEEE Wirel. Commun.28, 198–204 (2021)..
Kannegulla, A. et al. Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams.IEEE Trans. Terahertz Sci. Technol.4, 321–327 (2014)..
Luo, C. G. et al. High-resolution terahertz coded-aperture imaging for near-field three-dimensional target.Appl. Opt.58, 3293–3300 (2019)..
Sato, K.&Monnai, Y. Terahertz beam steering based on trajectory deflection in dielectric-free Luneburg lens.IEEE Trans. Terahertz Sci. Technol.10, 229–236 (2020)..
Yang, Y., Gurbuz, O. D.&Rebeiz, G. M. An eight-element 370-410-GHz phased-array transmitter in 45-nm CMOS SOI with peak EIRP of 8–8.5 dBm.IEEE Trans. Microw. Theory Tech.64, 4241–4249 (2016)..
Wu, J. B. et al. Liquid crystal programmable metasurface for terahertz beam steering.Appl. Phys. Lett.116, 131104 (2020)..
Liu, C. X. et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals.Adv. Opt. Mater.9, 2100932 (2021)..
Karl, N. et al. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range.Appl. Phys. Lett.104, 091115 (2014)..
Venkatesh, S. et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips.Nat. Electron.3, 785–793 (2020)..
Monroe, N. M. et al. Electronic THz pencil beam forming and 2D steering for high angular-resolution operation: a 98 × 98-unit 265GHz CMOS reflectarray with in-unit digital beam shaping and squint correction. In2022 IEEE International Solid- State Circuits Conference (ISSCC)1–3 (IEEE, CA, 2022).
Lou, J. et al. Silicon-based terahertz meta-devices for electrical modulation of Fano resonance and transmission amplitude.Adv. Opt. Mater.8, 2000449 (2020)..
Lou, J. et al. Optically controlled ultrafast terahertz metadevices with ultralow pump threshold.Small17, 2104275 (2021)..
Lou, J. et al. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers.Proc. Natl Acad. Sci. USA119, e2209218119 (2022)..
Lin, C. H. et al. Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type tree optimization.Nano Lett.21, 4981–4989 (2021)..
Lin, Q. W. et al. Coding metasurfaces with reconfiguration capabilities based on optical activation of phase‐change materials for terahertz beam manipulations.Adv. Opt. Mater.10, 2101699 (2022)..
Zhao, Y. C. et al. Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures.ACS Photonics5, 3040–3050 (2018)..
Kim, Y. et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces.Nano Lett.19, 3961–3968 (2019)..
Pitchappa, P. et al. Chalcogenide phase change material for active terahertz photonics.Adv. Mater.31, 1808157 (2019)..
Chen, B. W. et al. Electrically addressable integrated intelligent terahertz metasurface.Sci. Adv.8, eadd1296 (2022)..
Zhao, Y. C. et al. High-speed efficient terahertz modulation based on tunable collective-individual state conversion within an active 3 nm two-dimensional electron gas metasurface.Nano Lett.19, 7588–7597 (2019)..
Zhang, Y. X. et al. Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface.Nanophotonics8, 153–170 (2018)..
Zeng, H. X. et al. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip.Nat. Photonics15, 751–757 (2021)..
Hunt, J. et al. Metamaterial apertures for computational imaging.Science339, 310–313 (2013)..
Li, Y. B. et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging.Sci. Rep.6, 23731 (2016)..
Gan, F. J. et al. Robust compressive terahertz coded aperture imaging using deep priors.IEEE Geosci. Remote Sens. Lett.19, 3511205 (2022)..
Wang, L. Y. et al. A fractional phase-coding strategy for terahertz beam patterning on digital metasurfaces.Opt. Express28, 6395–6407 (2020)..
Liu, S. et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams.Adv. Sci.3, 1600156 (2016)..
Dong, D. S. et al. Terahertz broadband low-reflection metasurface by controlling phase distributions.Adv. Opt. Mater.3, 1405–1410 (2015)..
Gao, L. H. et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces.Light Sci. Appl.4, e324 (2015)..
Zhao, Y. et al. Broadband diffusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm.Sci. Rep.6, 23896 (2016)..
Li, S. J. et al. Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm.Sci. Rep.6, 37409 (2016)..
Moccia, M. et al. Coding metasurfaces for diffuse scattering: scaling laws, bounds, and suboptimal design.Adv. Opt. Mater.5, 1700455 (2017)..
Nayeri, P., Yang, F.&Elsherbeni, A. Z. Bifocal design and aperture phase optimizations of reflectarray antennas for wide-angle beam scanning performance.IEEE Trans. Antennas Propag.61, 4588–4597 (2013)..
Ghasempour, Y. et al. Single-shot link discovery for terahertz wireless networks.Nat. Commun.11, 2017 (2020)..
Menzel, W., Pilz, D.&Al-Tikriti, M. Millimeter-wave folded reflector antennas with high gain, low loss, and low profile.IEEE Antennas Propag. Mag.44, 24–29 (2002)..
Li, L. L. et al. Intelligent metasurfaces: control, communication and computing.eLight2, 7 (2022)..
Ma, Q. et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform.eLight2, 11 (2022)..
Dai, L. L. et al. Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results.IEEE Access8, 45913–45923 (2020)..
Yang, F. Y., Pitchappa, P.&Wang, N. Terahertz reconfigurable intelligent surfaces (RISs) for 6G communication links.Micromachines13, 285 (2022)..
Lynch, J. J. et al. Coded aperture subreflector array for high resolution radar imaging. InProc. SPIE 10994, Passive and Active Millimeter-Wave Imaging XXII1099405 (SPIE, 2019).
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution