1.Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
2.Pohang University of Science and Technology, Department of Physics, 37673 Pohang, Korea
Maksim Grechko (grechko@mpip-mainz.mpg.de)
Mischa Bonn (bonn@mpip-mainz.mpg.de)
Published:30 September 2023,
Published Online:26 July 2023,
Received:09 January 2023,
Revised:10 July 2023,
Accepted:14 July 2023
Scan QR Code
Di Virgilio, L. et al. Controlling the electro-optic response of a semiconducting perovskite coupled to a phonon-resonant cavity. Light: Science & Applications, 12, 1749-1756 (2023).
Di Virgilio, L. et al. Controlling the electro-optic response of a semiconducting perovskite coupled to a phonon-resonant cavity. Light: Science & Applications, 12, 1749-1756 (2023). DOI: 10.1038/s41377-023-01232-0.
Optical cavities
resonant with vibrational or electronic transitions of material within the cavity
enable control of light-matter interaction. Previous studies have reported cavity-induced modifications of chemical reactivity
fluorescence
phase behavior
and charge transport. Here
we explore the effect of resonant cavity-phonon coupling on the transient photoconductivity in a hybrid organic-inorganic perovskite. To this end
we measure the ultrafast photoconductivity response of perovskite in a tunable Fabry–Pérot terahertz cavity
designed to be transparent for optical excitation. The terahertz-cavity field-phonon interaction causes apparent Rabi splitting between the perovskite phonon mode and the cavity mode. We explore whether the cavity-phonon interaction affects the material's electron-phonon interaction by determining the charge-carrier mobility through photoconductivity. Despite the apparent hybridization of cavity and phonon modes
we show that the perovskite properties in both ground (phonon response) and excited (photoconductive response) states remain unaffected by the tunable light-matter interaction. Yet the response of the integral perovskite-terahertz optical cavity system depends critically on the interaction strength of the cavity with the phonon: the transient terahertz response to optical excitation can be increased up to threefold by tuning the cavity-perovskite interaction strength. These results enable tunable switches and frequency-controlled induced transparency devices.
Cavalleri, A. Photo-induced superconductivity.Contemp. Phys.59, 31–46 (2018)..
Emel'yanov, V. I.&Babak, D. V. Ultrafast vibronic phase transitions induced in semiconductors by femtosecond laser pulses.Phys. Solid State41, 1338–1342 (1999)..
Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3.Science364, 1079–1082 (2019)..
Assion, A. et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses.Science282, 919–922 (1998)..
Yoder, B. L., Bisson, R.&Beck, R. D. Steric effects in the chemisorption of vibrationally excited methane on Ni(100).Science329, 553–556 (2010)..
Potter, E. D. et al. Femtosecond laser control of a chemical reaction.Nature355, 66–68 (1992)..
Haroche, S.&Kleppner, D. Cavity quantum electrodynamics.Phys. Today42, 24–30 (1989)..
Ducloy, M.&Bloch, D.Quantum Optics of Confined Systems(Springer, 1996).
Lamb, W. E. Jr&Retherford, R. C. Fine structure of the hydrogen atom by a microwave method.Phys. Rev.72, 241–243 (1947)..
Heinzen, D. J.&Feld, M. S. Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator.Phys. Rev. Lett.59, 2623–2626 (1987)..
Garcia-Vidal, F. J., Ciuti, C.&Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields.Science373, eabd0336 (2021)..
Skolnick, M. S., Fisher, T. A.&Whittaker, D. M. Strong coupling phenomena in quantum microcavity structures.Semicond. Sci. Technol.13, 645–669 (1998)..
Wang, Q. et al. Direct observation of strong light-exciton coupling in thin WS2flakes.Opt. Express24, 7151–7157 (2016)..
Rahme, M. S. et al. Strong coupling and energy funnelling in an electrically conductive organic blend.J. Mater. Chem. C8, 11485–11491 (2020)..
Coles, D. M. et al. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity.Nat. Mater.13, 712–719 (2014)..
Du, W. N. et al. Recent progress of strong exciton–photon coupling in lead halide perovskites.Adv. Mater.31, 1804894 (2019)..
Kim, H. S. et al. Phonon-polaritons in lead halide perovskite film hybridized with THz metamaterials.Nano Lett.20, 6690–6696 (2020)..
Nagarajan, K., Thomas, A.&Ebbesen, T. W. Chemistry under vibrational strong coupling.J. Am. Chem. Soc.143, 16877–16889 (2021)..
Damari, R. et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies.Nat. Commun.10, 3248 (2019)..
Jarc, G. et al. Tunable cryogenic terahertz cavity for strong light-matter coupling in complex materials.Rev. Sci. Instrum.93, 033102 (2022)..
Basov, D. N. et al. Polariton panorama.Nanophotonics10, 549–577 (2020)..
Herrera, F.&Spano, F. C. Cavity-controlled chemistry in molecular ensembles.Phys. Rev. Lett.116, 238301 (2016)..
Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling.Science363, 615–619 (2019)..
Thomas, A. et al. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field.Angew. Chem. Int. Ed. Engl.55, 11462–11466 (2016)..
Hutchison, J. A. et al. Modifying chemical landscapes by coupling to vacuum fields.Angew. Chem. Int. Ed. Engl.51, 1592–1596 (2012)..
Sandeep, K. et al. Manipulating the self-assembly of phenyleneethynylenes under vibrational strong coupling.J. Phys. Chem. Lett.13, 1209–1214 (2022)..
Joseph, K. et al. Supramolecular assembly of conjugated polymers under vibrational strong coupling.Angew. Chem. Int. Ed. Engl.60, 19665–19670 (2021)..
Nagarajan, K. et al. Conductivity and photoconductivity of a p-Type organic semiconductor under ultrastrong coupling.ACS Nano14, 10219–10225 (2020)..
Orgiu, E. et al. Conductivity in organic semiconductors hybridized with the vacuum field.Nat. Mater.14, 1123–1129 (2015)..
Hagenmüller, D. et al. Cavity-enhanced transport of charge.Phys. Rev. Lett.119, 223601 (2017)..
Bhatt, P., Kaur, K.&George, J. Enhanced charge transport in two-dimensional materials through light-matter strong coupling.ACS Nano15, 13616–13622 (2021)..
Berghuis, A. M. et al. Controlling exciton propagation in organic crystals through strong coupling to plasmonic nanoparticle arrays.ACS Photonics9, 2263–2272 (2022)..
Fukushima, T., Yoshimitsu, S.&Murakoshi, K. Inherent promotion of ionic conductivity via collective vibrational strong coupling of water with the vacuum electromagnetic field.J. Am. Chem. Soc.144, 12177–12183 (2022)..
Weber, D. CH3NH3PbX3, ein Pb(Ⅱ)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb(Ⅱ)-system with cubic perovskite structure.Z. Naturforsch. B33, 1443–1445 (1978)..
Sendner, M. et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport.Mater. Horiz.3, 613–620 (2016)..
Hempel, H. et al. Predicting solar cell performance from terahertz and microwave spectroscopy.Adv. Energy Mater.12, 2102776 (2022)..
Karakus, M. et al. Phonon-electron scattering limits free charge mobility in methylammonium lead iodide perovskites.J. Phys. Chem. Lett.6, 4991–4996 (2015)..
Lan, Y. et al. Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite.Sci. Adv.5, eaaw5558 (2019)..
Ziman, J. M.Electrons and Phonons(Oxford University Press, 2001).
Ferreira, A. C. et al. Direct evidence of weakly dispersed and strongly anharmonic optical phonons in hybrid perovskites.Commun. Phys.3, 48 (2020)..
Ulbricht, R. et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy.Rev. Mod. Phys.83, 543–586 (2011)..
Brivio, F. et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide.Phys. Rev. B92, 144308 (2015)..
Norcada.MEMS Chips and Lasers for Industrial and Scientific Applications.https://www.norcada.com/https://www.norcada.com/(2022)..
Wang, S. J. et al. Quantum yield of polariton emission from hybrid light-matter states.J. Phys. Chem. Lett.5, 1433–1439 (2014)..
Hegmann, F. A. et al. Picosecond transient photoconductivity in functionalized pentacene molecular crystals probed by terahertz pulse spectroscopy.Phys. Rev. Lett.89, 227403 (2002)..
Hendry, E. et al. Free carrier photogeneration in polythiophene versus poly(phenylene vinylene) studied with THz spectroscopy.Chem. Phys. Lett.432, 441–445 (2006)..
Lui, K. P. H.&Hegmann, F. A. Fluence- and temperature-dependent studies of carrier dynamics in radiation-damaged silicon-on-sapphire and amorphous silicon.J. Appl. Phys.93, 9012–9018 (2003)..
Yan, H. J. et al. Ultrafast terahertz probe of photoexcited free charge carriers in organometal CH3NH3PbI3perovskite thin film.Appl. Phys. A122, 414 (2016)..
Herz, L. M. Charge-carrier dynamics in organic-inorganic metal halide perovskites.Annu. Rev. Phys. Chem.67, 65–89 (2016)..
Chan, W. P. et al. Efficient DNA-driven nanocavities for approaching quasi-deterministic strong coupling to a few fluorophores.ACS Nano15, 13085–13093 (2021)..
Song, T. T. et al. Compounding plasmon-exciton strong coupling system with gold nanofilm to boost rabi splitting.Nanomaterials9, 564 (2019)..
Park, K. D. et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter.Sci. Adv.5, eaav5931 (2019)..
Flick, J., Rivera, N.&Narang, P. Strong light-matter coupling in quantum chemistry and quantum photonics.Nanophotonics7, 1479–1501 (2018)..
Törmä, P.&Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review.Rep. Prog. Phys.78, 013901 (2015)..
Német, N. et al. Transfer-matrix approach to determining the linear response of all-fiber networks of cavity-QED systems.Phys. Rev. Appl.13, 064010 (2020)..
Cataldo, G. et al. Infrared dielectric properties of low-stress silicon oxide.Opt. Lett.41, 1364–1367 (2016)..
Zhu, Y. F. et al. Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations.Phys. Rev. Lett.64, 2499–2502 (1990)..
Takele, W. M. et al. Scouting for strong light-matter coupling signatures in Raman spectra.Phys. Chem. Chem. Phys.23, 16837–16846 (2021)..
Lieberherr, A. Z. et al. Vibrational strong coupling in liquid water from cavity molecular dynamics.J. Chem. Phys.158, 234106 (2023)..
Kosaka, H. et al. Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering.Appl. Phys. Lett.74, 1370–1372 (1999)..
Chan, V. W. S. Free-space optical communications.J. Lightwave Technol.24, 4750–4762 (2006)..
Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells.Nat. Commun.6, 6142 (2015)..
Dualeh, A. et al. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells.Adv. Funct. Mater.24, 3250–3258 (2014)..
Baxter, J. B.&Guglietta, G. W. Terahertz spectroscopy.Anal. Chem.83, 4342–4368 (2011)..
Němec, H., Kadlec, F.&Kužel, P. Methodology of an optical pump-terahertz probe experiment: an analytical frequency-domain approach.J. Chem. Phys.117, 8454–8466 (2002)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution