1.Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
2.X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
3.Departement of Computer Science, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA
4.XRD Design and Engineering Department, Rigaku Corporation 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
5.Bioscience Division, Argonne National Laboratory, Lemont, IL 60439, USA
Arvind Ramanathan (ramanathana@anl.gov)
Qingteng Zhang (qzhang234@anl.gov)
Published:30 September 2023,
Published Online:18 August 2023,
Received:29 January 2023,
Revised:30 June 2023,
Accepted:15 July 2023
Scan QR Code
Ozgulbas, D. Y. et al. Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS. Light: Science & Applications, 12, 1857-1866 (2023).
Ozgulbas, D. Y. et al. Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS. Light: Science & Applications, 12, 1857-1866 (2023). DOI: 10.1038/s41377-023-01233-z.
The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties
such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges (10
−6
–10
3
s /10
−10
–10
−6
m). Tailored material design
however
requires searching through a massive number of sample compositions and experimental parameters
which is beyond the bandwidth of the current coherent X-ray beamline. Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source
we demonstrated the consistency between the Brownian dynamics of ~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary. The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles. This closed-loop
AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence
and is a first step towards high-throughput
autonomous material discovery.
Arratia, P. E. Complex fluids at work.Physics4, 9 (2011)..
Begam, N. et al. Kinetics of network formation and heterogeneous dynamics of an egg white gel revealed by coherent X-ray scattering.Phys. Rev. Lett.126, 098001 (2021)..
Girelli, A. et al. Microscopic dynamics of liquid-liquid phase separation and domain coarsening in a protein solution revealed by X-ray photon correlation spectroscopy.Phys. Rev. Lett.126, 138004 (2021)..
Whittaker, M. L. et al. Ion complexation waves emerge at the curved interfaces of layered minerals.Nat. Commun.13, 3382 (2022)..
Chushkin, Y. et al. Probing cage relaxation in concentrated protein solutions by X-ray photon correlation spectroscopy.Phys. Rev. Lett.129, 238001 (2022)..
Jeen, H. et al. Reversible redox reactions in an epitaxially stabilized SrCoO(x) oxygen sponge.Nat. Mater.12, 1057–1063 (2013)..
Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains.Nano Lett.12, 209–213 (2012)..
Zhang, W., Mazzarello, R., Wuttig, M.&Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing.Nat. Rev. Mater.4, 150–168 (2019)..
Quiroz, F. G.&Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers.Nat. Mater.14, 1164–1171 (2015)..
Allahgholi, A. et al. The adaptive gain integrating pixel detector at the European XFEL.J. Synchrotron Radiat.26, 74–82 (2019)..
Pennicard, D. et al. LAMBDA 2M GaAs—A multi-megapixel hard X-ray detector for synchrotrons.J. Instrum.13, C01026 (2018)..
Möller, J. et al. Implications of disturbed photon-counting statistics of Eiger detectors for X-ray speckle visibility experiments.J. Synchrotron Radiat.26, 1705–1715 (2019)..
Jo, W. et al. Single and multi-pulse based X-ray photon correlation spectroscopy.Opt. Express31, 3315–3324 (2023)..
Yavitt, B. M. et al. Collective nanoparticle dynamics associated with bridging network formation in model polymer nanocomposites.ACS Nano15, 11501–11513 (2021)..
Senses, E. et al. Small particle driven chain disentanglements in polymer nanocomposites.Phys. Rev. Lett.118, 147801 (2017)..
Lin, C.-H. et al. Revealing meso-structure dynamics in additive manufacturing of energy storage via operando coherent X-ray scattering.Appl. Mater. Today24, 101075 (2021)..
Lehmkühler, F. et al. Slowing down of dynamics and orientational order preceding crystallization in hard-sphere systems.Sci. Adv.6, eabc5916 (2020)..
Ament, S. et al. Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams.Sci. Adv.7, eabg4930 (2021)..
Samarakoon, A., Tennant, D. A., Ye, F., Zhang, Q.&Grigera, S. A. Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure.Commun. Mater.3, 84 (2022)..
Chavas, L. M. G. et al. PROXIMA-1 beamline for macromolecular crystallography measurements at Synchrotron SOLEIL.J. Synchrotron Radiat.28, 970–976 (2021)..
Murakami, H. et al. Development of SPACE-Ⅱ for rapid sample exchange at SPring-8 macromolecular crystallography beamlines.Acta Crystallogr. Sect. D Struct. Biol.76, 155–165 (2020)..
Gu, D. H. et al. BL-11C Micro-MX: a high-flux microfocus macromolecular-crystallography beamline for micrometre-sized protein crystals at Pohang Light Source Ⅱ.J. Synchrotron Radiat.28, 1210–1215 (2021)..
Nanao, M. et al. ID23-2: an automated and high-performance microfocus beamline for macromolecular crystallography at the ESRF.J. Synchrotron Radiat.29, 581–590 (2022)..
Lazo, E. O. et al. Robotic sample changers for macromolecular X-ray crystallography and biological small-angle X-ray scattering at the National Synchrotron Light Source Ⅱ.J. Synchrotron Radiat.28, 1649–1661 (2021)..
Sanchez-Weatherby, J. et al. VMXi: a fully automated, fully remote, high-flux in situ macromolecular crystallography beamline.J. Synchrotron Radiat.26, 291–301 (2019)..
Ursby, T. et al. BioMAX–the first macromolecular crystallography beamline at MAX Ⅳ Laboratory.J. Synchrotron Radiat.27, 1415–1429 (2020)..
Li, X. Y., Lu, H. H.&Sun, S. C. Physical design of a cryogenic delta–knot undulator for the high energy photon source.Nucl. Instrum. Methods Phys. Res. Sect. A986, 164639 (2021)..
Chenevier, D.&Joly, A. ESRF: inside the extremely brilliant source upgrade.Synchrotron Radiat. N.31, 32–35 (2018)..
Martensson, N.&Eriksson, M. The saga of MAX Ⅳ, the first multi-bend achromat synchrotron light source.Nucl. Instrum. Methods Phys. Res. Sect. A907, 97–104 (2018)..
Halavanau, A., Decker, F. J., Emma, C., Sheppard, J.&Pellegrini, C. Very high brightness and power LCLS-Ⅱ hard X-ray pulses.J. Synchrotron Radiat.26, 635–646 (2019)..
Switalski, K. et al. Direct measurement of Stokes-Einstein diffusion of Cowpea mosaic virus with 19 µs-resolved XPCS.J. Synchrotron Radiat.29, 1429–1435 (2022)..
Konstantinova, T., Wiegart, L., Rakitin, M., DeGennaro, A. M.&Barbour, A. M. Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder–decoder models.Sci. Rep.11, 14756 (2021)..
Timmermann, S. et al. Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn-Hilliard-type simulations using auto-encoder networks.J. Appl. Crystallogr.55, 751–757 (2022)..
Sønderby, P. et al. Concentrated protein solutions investigated using acoustic levitation and small-angle X-ray scattering.J. Synchrotron Radiat.27, 396–404 (2020)..
Schiener, A., Seifert, S.&Magerl, A. The stopped-drop method: a novel setup for containment-free and time-resolved measurements.J. Synchrotron Radiat.23, 545–550 (2016)..
Zhang, Q. et al. Sub-microsecond-resolved multi-speckle X-ray photon correlation spectroscopy with a pixel array detector.J. Synchrotron Radiat.25, 1408–1416 (2018)..
Lumma, D., Lurio, L. B., Mochrie, S. G. J.&Sutton, M. Area detector based photon correlation in the regime of short data batches: Data reduction for dynamic x-ray scattering.Rev. Sci. Instrum.71, 3274–3289 (2000)..
Kazemi, M. A., Saber, S., Elliott, J. A. W.&Nobes, D. S. Marangoni convection in an evaporating water droplet.Int. J. Heat. Mass Transf.181, 122042 (2021)..
Lurio, L. B., Thurston, G. M., Zhang, Q., Narayanan, S.&Dufresne, E. M. Use of continuous sample translation to reduce radiation damage for XPCS studies of protein diffusion.J. Synchrotron Radiat.28, 490–498 (2021)..
Bera, M. K.&Antonio, M. R. Crystallization of Keggin heteropolyanions via a two-step process in aqueous solutions.J. Am. Chem. Soc.138, 7282–7288 (2016)..
Qian, Y. et al. Crystallization of nanoparticles induced by precipitation of trace polymeric additives.Nat. Commun.12, 2767 (2021)..
Ma, L. et al. Diversifying composition leads to hierarchical composites with design flexibility and structural fidelity.ACS Nano15, 14095–14104 (2021)..
Vescovi, R. et al. AD-SDL/rpl_wei: v0.3.https://doi.org/10.5281/zenodo.8035273https://doi.org/10.5281/zenodo.8035273(2023).
Quigley, M. et al. ROS: an open-source Robot Operating System. InICRA Workshop on Open Source Software(2009).
Zhang, Q. et al. 20 µs-resolved high-throughput X-ray photon correlation spectroscopy on a 500k pixel detector enabled by data-management workflow.J. Synchrotron Radiat.28, 259–265 (2021)..
Chu, M. et al. pyXPCSviewer: an open-source interactive tool for X-ray photon correlation spectroscopy visualization and analysis.J. Synchrotron Radiat.29, 1122–1129 (2022)..
Kirby, N. et al. Improved radiation dose efficiency in solution SAXS using a sheath flow sample environment.Acta Crystallogr. Sect. D Struct. Biol.72, 1254–1266 (2016)..
Noack, M. M. et al. Gaussian processes for autonomous data acquisition at large-scale synchrotron and neutron facilities.Nat. Rev. Phys.3, 685–697 (2021)..
Kim, P. Y. et al. Relaxation and aging of nanosphere assemblies at a water-oil interface.ACS Nano16, 8967–8973 (2022)..
Lee, S. S., Fenter, P., Nagy, K. L.&Sturchio, N. C. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface.Nat. Commun.8, 15826 (2017)..
Song, J. et al. Microscopic dynamics underlying the stress relaxation of arrested soft materials.Proc. Natl Acad. Sci. USA119, e2201566119 (2022)..
Xi, Y. et al. Rheology and dynamics of a solvent segregation driven gel (SeedGel).Soft Matter19, 233–244 (2023)..
Nakaye, Y. et al. Characterization and performance evaluation of the XSPA-500k detector using synchrotron radiation.J. Synchrotron Radiat.28, 439–447 (2021)..
Cipelletti, L.&Weitz, D. A. Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator.Rev. Sci. Instrum.70, 3214–3221 (1999)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution