1.Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
2.Bioengineering Department, University of California, Los Angeles, CA 90095, USA
3.California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
Aydogan Ozcan (ozcan@ucla.edu)
Published:30 September 2023,
Published Online:15 August 2023,
Received:22 March 2023,
Revised:14 July 2023,
Accepted:15 July 2023
Scan QR Code
Rahman, M. S. S. et al. Universal linear intensity transformations using spatially incoherent diffractive processors. Light: Science & Applications, 12, 1830-1856 (2023).
Rahman, M. S. S. et al. Universal linear intensity transformations using spatially incoherent diffractive processors. Light: Science & Applications, 12, 1830-1856 (2023). DOI: 10.1038/s41377-023-01234-y.
Under spatially coherent light
a diffractive optical network composed of structured surfaces can be designed to perform any arbitrary complex-valued linear transformation between its input and output fields-of-view (FOVs) if the total number (
N
) of optimizable phase-only diffractive features is ≥~2
N
i
N
o
where
N
i
and
N
o
refer to the number of useful pixels at the input and the output FOVs
respectively. Here we report the design of a spatially incoherent diffractive optical processor that can approximate any arbitrary linear transformation in time-averaged intensity between its input and output FOVs. Under spatially incoherent monochromat
ic light
the spatially varying intensity point spread function (
H
) of a diffractive network
corresponding to a given
arbitrarily-selected linear intensity transformation
can be written as
H
(
m
n
;
m
′
n
′) = |
h
(
m
n
;
m
′
n
′)|
2
where
h
is the spatially coherent point spread function of the same diffractive network
and (
m
n
) and (
m
′
n
′) define the coordinates of the output and input FOVs
respectively. Using numerical simulations and deep learning
supervised through examples of input-output profiles
we demonstrate that a spatially incoherent diffractive network can be trained to all-optically perform any arbitrary linear intensity transformation between its input and output if
N
≥ ~2
N
i
N
o
. We also report the design of spatially incoherent diffractive networks for linear processing of intensity information at multiple illumination wavelengths
operating simultaneously. Finally
we numerically demonstrate a diffractive network design that performs all-optical classification of handwritten digits under spatially incoherent illumination
achieving a test accuracy of
>
95%. Spatially incoherent diffractive networks will be broadly useful for designing all-optical visual processors that can work under natural light.
Goodman, J. W.Introduction to Fourier Optics. 3rd ed. (Greenwoood: Roberts&Company Publishers, 2005).
Athale, R.&Psaltis, D. Optical computing: past and future.Opt. Photonics News27, 32–39 (2016)..
Solli, D. R.&Jalali, B. Analog optical computing.Nat. Photonics9, 704–706 (2015)..
Mengu, D. et al. At the intersection of optics and deep learning: statistical inference, computing, and inverse design.Adv. Opt. Photonics14, 209–290 (2022)..
Lugt, A. V. Signal detection by complex spatial filtering.IEEE Trans. Inf. Theory10, 139–145 (1964)..
Heinz, R. A., Artman, J. O.&Lee, S. H. Matrix multiplication by optical methods.Appl. Opt.9, 2161–2168 (1970)..
Goodman, J. W.&Woody, L. M. Method for performing complex-valued linear operations on complex-valued data using incoherent light.Appl. Opt.16, 2611–2612 (1977)..
Tamura, P. N.&Wyant, J. C. Two-dimensional matrix multiplication using coherent optical techniques.Opt. Eng.18, 198–204 (1979)..
Spall, J. et al. Fully reconfigurable coherent optical vector–matrix multiplication.Opt. Lett.45, 5752–5755 (2020)..
Goodman, J. W., Dias, A. R.&Woody, L. M. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms.Opt. Lett.2, 1–3 (1978)..
Stark, H.Application of Optical Fourier Transforms. (Elsevier Science, Amsterdam, Netherlands, 2012).
Farhat, N. H. et al. Optical implementation of the hopfield model.Appl. Opt.24, 1469–1475 (1985)..
Zuo, Y. et al. All-optical neural network with nonlinear activation functions.Optica6, 1132–1137 (2019)..
Hotate, K.&Okugawa, T. Optical information processing by synthesis of the coherence function.J. Lightwave Technol.12, 1247–1255 (1994)..
Silva, A. et al. Performing mathematical operations with metamaterials.Science343, 160–163 (2014)..
Kwon, H. et al. Nonlocal metasurfaces for optical signal processing.Phys. Rev. Lett.121, 173004 (2018)..
Zangeneh-Nejad, F. et al. Analogue computing with metamaterials.Nat. Rev. Mater.6, 207–225 (2021)..
Yu, N.&Capasso, F. Flat optics with designer metasurfaces.Nat. Mater.13, 139–150 (2014)..
Kulce, O. et al. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces.Light Sci. Appl.10, 196 (2021)..
Banerji, S. et al. Extreme-depth-of-focus imaging with a flat lens.Optica7, 214–217 (2020)..
Xu, N., Liu, G.&Tan, Q. Adjustable super-resolution microscopy with diffractive spot array illumination.Appl. Phys. Lett.116, 254103 (2020)..
Baek, S. H. et al. Single-shot hyperspectral-depth imaging with learned diffractive optics. InProc. IEEE/CVF International Conference on Computer Vision2651-2660 (IEEE, Montreal, 2021).
Xu, N., Liu, G.&Tan, Q. High-fidelity far-field microscopy at λ/8 resolution.Laser Photonics Rev.16, 2200307(2022)..
Xu, N. et al. Mechanical-scan-free and multi-color super-resolution imaging with diffractive spot array illumination. Print athttps://doi.org/10.48550/arXiv.2303.06988https://doi.org/10.48550/arXiv.2303.06988(2023).
Lin, X. et al. All-optical machine learning using diffractive deep neural networks.Science361, 1004–1008 (2018)..
Mengu, D. et al. Analysis of diffractive optical neural networks and their integration with electronic neural networks.IEEE J. Sel. Top. Quantum Electron.26, 1–14 (2019)..
LeCun, Y., Bengio, Y.&Hinton, G. Deep learning.Nature521, 436–444 (2015)..
Rahman, M. S. S. et al. Ensemble learning of diffractive optical networks.Light Sci. Appl.10, 14 (2021)..
Li, J. et al. Spectrally encoded single-pixel machine vision using diffractive networks.Sci. Adv.7, eabd7690 (2021)..
Luo, Y. et al. Computational imaging without a computer: seeing through random diffusers at the speed of light.eLight2, 4 (2022)..
Rahman, M. S. S.&Ozcan, A. Computer-free, all-optical reconstruction of holograms using diffractive networks.ACS Photonics8, 3375–3384 (2021)..
Mengu, D.&Ozcan, A. All-optical phase recovery: diffractive computing for quantitative phase imaging.Adv. Opt. Mater.10, 2200281 (2022)..
Bai, B. et al. To image, or not to image: class-specific diffractive cameras with all-optical erasure of undesired objects.eLight2, 14 (2022)..
Rahman, M. S. S.&Ozcan, A. Time-lapse image classification using a diffractive neural network.Adv. Intell. Syst.5, 2200387 (2023)..
Bai, B. et al. Data-class-specific all-optical transformations and encryption.Adv. Mater.https://doi.org/10.1002/adma.202212091https://doi.org/10.1002/adma.202212091(2023)..
Goi, E., Schoenhardt, S.&Gu, M. Direct retrieval of zernike-based pupil functions using integrated diffractive deep neural networks.Nat. Commun.13, 7531 (2022)..
Luo, X. et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible.Light Sci. Appl.11, 158 (2022)..
Luo, Y. et al. Design of task-specific optical systems using broadband diffractive neural networks.Light Sci. Appl.8, 112 (2019)..
Veli, M. et al. Terahertz pulse shaping using diffractive surfaces.Nat. Commun.12, 37 (2021)..
Li, J. et al. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network.Light Sci. Appl.11, 153 (2022)..
Li, J. et al. Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network.Adv. Photonics5, 016003 (2023)..
Shannon, C. E. Communication in the presence of noise.Proc. IRE37, 10–21 (1949)..
Saleh, B. E. A.&Teich, M. C.Fundamentals of Photonics. (Hoboken: Wiley, 2007).
Lecun, Y. et al. Gradient-based learning applied to document recognition.Proc. IEEE86, 2278–2324 (1998)..
Li, J. et al. Class-specific differential detection in diffractive optical neural networks improves inference accuracy.Adv. Photonics1, 046001 (2019)..
Chahal, K. S. et al. A Hitchhiker's guide on distributed training of deep neural networks.J. Parallel Distrib. Comput.137, 65–76 (2020)..
Saha, S. K. et al. Scalable submicrometer additive manufacturing.Science366, 105–109 (2019)..
Beaman, J. J. et al. Additive manufacturing review: early past to current practice.J. Manuf. Sci. Eng.142, 110812 (2020)..
Mengu, D. et al. Misalignment resilient diffractive optical networks.Nanophotonics9, 4207–4219 (2020)..
Kozacki, T.&Falaggis, K. Angular spectrum-based wave-propagation method with compact space bandwidth for large propagation distances.Opt. Lett.40, 3420–3423 (2015)..
Loshchilov, I.&Hutter, F. Decoupled weight decay regularization. InProc. 7th International Conference on Learning Representations(New Orleans, ICLR, 2019).
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. InProc. 33rd International Conference on Neural Information Processing Systems721 (Vancouver, Curran Associates Inc., 2019).
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution