1.Key Laboratory for Physical Electronics and Devices, Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2.Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
3.Faculty of Physics, Higher School of Economics, Moscow 105066, Russia
4.Quantum Technology Centre, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
Yiqi Zhang (zhangyiqi@xjtu.edu.cn)
Yaroslav V. Kartashov (yaroslav.kartashov@icfo.eu)
Published:30 September 2023,
Published Online:10 August 2023,
Received:24 April 2023,
Revised:10 July 2023,
Accepted:14 July 2023
Scan QR Code
Ren, B. Q. et al. Observation of nonlinear disclination states. Light: Science & Applications, 12, 1818-1829 (2023).
Ren, B. Q. et al. Observation of nonlinear disclination states. Light: Science & Applications, 12, 1818-1829 (2023). DOI: 10.1038/s41377-023-01235-x.
Introduction of controllable deformations into periodic materials that lead to disclinations in their structure opens novel routes for construction of higher-order topological insulators hosting topological states at disclinations. Appearance of these topological states is consistent with the bulk-disclination correspondence principle
and is due to the filling anomaly that results in fractional charges to the boundary unit cells. So far
topological disclination states were observed only in the linear regime
while the interplay between nonlinearity and topology in the systems with disclinations has been never studied experimentally. We report here on the experimental observation of the nonlinear photonic disclination states in waveguide arrays with pentagonal or heptagonal disclination cores inscribed in transparent optical medium using the fs-laser writing technique. The transition between nontopological and topological phases in such structures is controlled by the Kekulé distortion coefficient
r
with topological phase hosting simultaneously disclination states at the inner disclination core and spatially separated from them corner-Ⅰ
corner-Ⅱ
and extended edge states at the outer edge of the structure. We show that the robust nonlinear disclination states bifurcate from their linear counterparts and that location of their propagation constants in the gap and
hence
their spatial localization can be controlled by their power. Nonlinear disclination states can be efficiently excited by Gaussian input beams
but only if they are focused into the waveguides belonging to the disclination core
where such topological states reside. Our results open new prospects for investigation of nonlinear effects in topological systems with disclinations and are relevant for different areas of science
including Bose-Einstein and polariton condensates
where potentials with the disclinations can be created.
Hasan, M. Z.&Kane, C. L. Colloquium: topological insulators.Rev. Modern Phys.82, 3045–3067 (2010)..
Qi, X.-L.&Zhang, S.-C. Topological insulators and superconductors.Rev. Modern Phys.83, 1057–1110 (2011)..
Huber, S. D. Topological mechanics.Nat. Phys.12, 621–623 (2016)..
Xue, H., Yang, Y.&Zhang, B. Topological acoustics.Nat. Rev. Mater.7, 974–990 (2022)..
Jotzu, G. et al. Experimental realisation of the topological Haldane model.Nature515, 237–240 (2014)..
Klembt, S. et al. Exciton-polariton topological insulator.Nature562, 552–556 (2018)..
Lu, L., Joannopoulos, J. D.&Soljačić, M. Topological photonics.Nat. Photon8, 821–829 (2014)..
Ozawa, T. et al. Topological photonics.Rev. Modern Phys.91, 015006 (2019)..
Smirnova, D., Leykam, D., Chong, Y.&Kivshar, Y. Nonlinear topological photonics.Appl. Phys. Rev.7, 021306 (2020)..
Rechtsman, M. C. et al. Photonic Floquet topological insulators.Nature496, 196–200 (2013)..
Liang, G. Q.&Chong, Y. D. Optical resonator analog of a two-dimensional topological insulator.Phys. Rev. Lett.110, 203904 (2013)..
Wu, L.-H.&Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material.Phys. Rev. Lett.114, 223901 (2015)..
Yang, Y. et al. Realization of a three-dimensional photonic topological insulator.Nature565, 622–626 (2019)..
Maczewsky, L. J., Zeuner, J. M., Nolte, S.&Szameit, A. Observation of photonic anomalous Floquet topological insulators.Nat. Commun.8, 13756 (2017)..
Noh, J., Huang, S., Chen, K. P.&Rechtsman, M. C. Observation of photonic topological valley Hall edge states.Phys. Rev. Lett.120, 063902 (2018)..
Noh, J. et al. Topological protection of photonic mid-gap defect modes.Nat. Photon.12, 408–415 (2018)..
Pyrialakos, G. G. et al. Bimorphic Floquet topological insulators.Nat. Mater.21, 634–639 (2022)..
Bandres, M. A., Rechtsman, M. C.&Segev, M. Topological photonic quasicrystals: fractal topological spectrum and protected transport.Phys. Rev. X6, 011016 (2016)..
Yang, Z., Lustig, E., Lumer, Y.&Segev, M. Photonic Floquet topological insulators in a fractal lattice.Light Sci. Appl.9, 128 (2020)..
Biesenthal, T. et al. Fractal photonic topological insulators.Science376, eabm2842 (2022)..
Liu, Y. et al. Bulk-disclination correspondence in topological crystalline insulators.Nature589, 381–385 (2021)..
Peterson, C. W., Li, T., Jiang, W., Hughes, T. L.&Bahl, G. Trapped fractional charges at bulk defects in topological insulators.Nature589, 376–380 (2021)..
Wu, S., Jiang, B., Liu, Y.&Jiang, J.-H. All-dielectric photonic crystal with unconventional higher-order topology.Photon. Res.9, 668–677 (2021)..
Rüegg, A.&Lin, C. Bound states of conical singularities in graphene-based topological insulators.Phys. Rev. Lett.110, 046401 (2013)..
Teo, J. C. Y.&Hughes, T. L. Existence of Majorana-Fermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions.Phys. Rev. Lett.111, 047006 (2013)..
Benalcazar, W. A., Teo, J. C. Y.&Hughes, T. L. Classification of two-dimensional topological crystalline superconductors and Majorana bound states at disclinations.Phys. Rev. B89, 224503 (2014)..
Benalcazar, W. A., Li, T.&Hughes, T. L. Quantization of fractional corner charge inCn-symmetric higher-order topological crystalline insulators.Phys. Rev. B99, 245151 (2019)..
Li, T., Zhu, P., Benalcazar, W. A.&Hughes, T. L. Fractional disclination charge in two-dimensionalCn-symmetric topological crystalline insulators.Phys. Rev. B101, 115115 (2020)..
Wang, H.-X. et al. Higher-order topological phases in tunableC3symmetric photonic crystals.Photon. Res.9, 1854–1864 (2021)..
Peterson, C. W., Li, T., Benalcazar, W. A., Hughes, T. L.&Bahl, G. A fractional corner anomaly reveals higher-order topology.Science368, 1114–1118 (2020)..
Xie, B. et al. Higher-order band topology.Nat. Rev. Phys.3, 520–532 (2021)..
Chen, Y. et al. Observation of topologicalp-orbital disclination states in non-Euclidean acousticmetamaterials.Phys. Rev. Lett.129, 154301 (2022)..
Wang, Q., Xue, H., Zhang, B.&Chong, Y. D. Observation of protected photonic edge states induced by real-space topological lattice defects.Phys. Rev. Lett.124, 243602 (2020)..
Xie, B.-Y., You, O.&Zhang, S. Photonic topological pump between chiral disclination states.Phys. Rev. A106, L021502 (2022)..
Wang, Q. et al. Vortex states in an acoustic Weyl crystal with a topological lattice defect.Nat. Commun.12, 3654 (2021)..
Deng, Y. et al. Observation of degenerate zero-energy topological states at disclinations in an acoustic lattice.Phys. Rev. Lett.128, 174301 (2022)..
Liang, S.-N. et al. Topological disclination states for surface acoustic waves.Phys. Rev. B106, 174112 (2022)..
Ren, B., Wang, H.,Kartashov, Y. V., Li, Y.&Zhang, Y. Nonlinear photonic disclination states.APL Photon.8, 016101 (2023)..
Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator.Science370, 701–704 (2020)..
Jürgensen, M., Mukherjee, S.&Rechtsman, M. C. Quantized nonlinear Thouless pumping.Nature596, 63–67 (2021)..
Fu, Q., Wang, P., Kartashov, Y. V., Konotop, V. V.&Ye, F. Nonlinear Thouless pumping: Solitons and transport breakdown.Phys. Rev. Lett.128, 154101 (2022)..
Fu, Q., Wang, P., Kartashov, Y. V., Konotop, V. V.&Ye, F. Two-dimensional nonlinear Thouless pumping of matter waves.Phys. Rev. Lett.129, 183901 (2022)..
Jürgensen, M., Mukherjee, S., Jörg, C.&Rechtsman, M. C. Quantized fractional Thouless pumping of solitons.Nat. Phys.19, 420–426 (2023)..
Ablowitz, M. J., Curtis, C. W.&Ma, Y.-P. Linear and nonlinear traveling edge waves in optical honeycomb lattices.Phys. Rev. A90, 023813 (2014)..
Leykam, D.&Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators.Phys. Rev. Lett.117, 143901 (2016)..
Ablowitz, M. J.&Cole, J. T. Tight-binding methods for general longitudinally driven photonic lattices: edge states and solitons.Phys. Rev. A96, 043868 (2017)..
Lumer, Y., Plotnik, Y., Rechtsman, M. C.&Segev, M. Self-localized states in photonic topological insulators.Phys. Rev. Lett.111, 243905 (2013)..
Zhang, Z. Y. et al. Observation of edge solitons in photonic graphene.Nat. Commun.11, 1902 (2020)..
Mukherjee, S.&Rechtsman, M. C. Observation of Floquet solitons in a topological bandgap.Science368, 856–859 (2020)..
Ivanov, S. K., Kartashov, Y. V., Szameit, A., Torner, L.&Konotop, V. V. Vector topological edge solitons in Floquet insulators.ACS Photon.7, 735–745 (2020)..
Ivanov, S. K. et al. Topological dipole Floquet solitons.Phys. Rev. A103, 053507 (2021)..
Zhong, H. et al. Nonlinear topological valley Hall edge states arising from type-Ⅱ Dirac cones.Adv. Photon.3, 056001 (2021)..
Ren, B. et al. Dark topological valley Hall edge solitons.Nanophotonics10, 3559–3566 (2021)..
Kartashov, Y. V.&Skryabin, D. V. Modulational instability and solitary waves in polariton topological insulators.Optica3, 1228–1236 (2016)..
Zhang, Y. Q., Kartashov, Y. V.&Ferrando, A. Interface states in polariton topological insulators.Phys. Rev. A99, 053836 (2019)..
Kartashov, Y. V.&Skryabin, D. V. Bistable topological insulator with exciton-polaritons.Phys. Rev. Lett.119, 253904 (2017)..
Zhang, W., Chen, X., Kartashov, Y. V., Skryabin, D. V.&Ye, F. Finite-dimensional bistable topological insulators: from small to large.Laser Photon. Rev.13, 1900198 (2019)..
Zhang, Y., Kartashov, Y. V., Torner, L., Li, Y.&Ferrando, A. Nonlinear higher-order polariton topological insulator.Optics Lett.45, 4710–4713 (2020)..
Kirsch, M. S. et al. Nonlinear second-order photonic topological insulators.Nat. Phys.17, 995–1000 (2021)..
Hu, Z. et al. Nonlinear control of photonic higher-order topological bound states in the continuum.Light Sci. Appl.10, 164 (2021)..
Zhong, H., Kartashov, Y. V., Li, Y.&Zhang, Y.π-mode solitons in photonic Floquet lattices.Phys. Rev. A107, L021502 (2023)..
Kartashov, Y. V. et al. Observation of edge solitons in topological trimer arrays.Phys. Rev. Lett.128, 093901 (2022)..
Tan, D., Wang, Z., Xu, B.&Qiu, J. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices.Adv. Photon.3, 024002 (2021)..
Lin, Z.&Hong, M. Femtosecond laser precision engineering: from micron, submicron, to nanoscale.Ultrafast Sci.2021, 9783514 (2021)..
Li, L., Kong, W.&Chen, F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances.Adv. Photon.4, 024002 (2022)..
Lederer, F. et al. Discrete solitons in optics.Phys. Rep.463, 1–126 (2008)..
Fu, Q. et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices.Nat. Photon.14, 663–668 (2020)..
Qin, H., Zhang, Z., Chen, Q.&Fleury, R. Anomalous Floquet topological disclination states. Print athttps://doi.org/10.48550/arXiv.2304.03206https://doi.org/10.48550/arXiv.2304.03206(2023).
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution