Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, UK
Neil C. Greenham (ncg11@cam.ac.uk)
Published:30 September 2023,
Published Online:30 August 2023,
Received:18 January 2023,
Revised:04 July 2023,
Accepted:14 July 2023
Scan QR Code
Dai, L. J., Ye, J. Z. & Greenham, N. C. Thermalization and relaxation mediated by phonon management in tin-lead perovskites. Light: Science & Applications, 12, 1971-1981 (2023).
Dai, L. J., Ye, J. Z. & Greenham, N. C. Thermalization and relaxation mediated by phonon management in tin-lead perovskites. Light: Science & Applications, 12, 1971-1981 (2023). DOI: 10.1038/s41377-023-01236-w.
Understanding and control of ultrafast non-equilibrium processes in semiconductors is key to making use of the full photon energy before relaxation
leading to new ways to break efficiency limits for solar energy conversion. In this work
we demonstrate the observation and modulation of slow relaxation in uniformly mixed ti
n-lead perovskites (MASn
x
Pb
1-x
I
3
and CsSn
x
Pb
1-x
I
3
nanocrystals). Transient absorption measurements reveal that slow cooling mediated by a hot phonon bottleneck effect appears at carrier densities above ~10
18
cm
−3
for tin-lead alloy nanocrystals
and tin addition is found to give rise to suppressed cooling. Within the alloy nanoparticles
the combination of a newly introduced high-energy band
screened Fröhlich interaction
suppressed Klemens decay and reduced thermal conductivity (acoustic phonon transport) with increased tin content contributes to the slowed relaxation. For inorganic nanocrystals where defect states couple strongly with carriers
sodium doping has been confirmed to benefit in maintaining hot carriers by decoupling them from deep defects
leading to a decreased energy-loss rate during thermalization and an enhanced hot phonon bottleneck effect. The slow cooling we observe uncovers the intrinsic photophysics of perovskite nanocrystals
with implications for photovoltaic applications where suppressed cooling could lead to hot-carrier solar cells.
Kojima, A., Teshima, K., Shirai, Y.&Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J. Am. Chem. Soc.131, 6050–6051 (2009)..
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N.&Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science338, 643–647 (2012)..
Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.Sci. Rep.2, 591 (2012)..
Green, M. A., Ho-Baillie, A.&Snaith, H. J. The emergence of perovskite solar cells.Nat. Photon.8, 506–514 (2014)..
Yin, J. et al. Manipulation of hot carrier cooling dynamics in two-dimensional Dion–Jacobson hybrid perovskites via Rashba band splitting.Nat. Commun.12, 3995 (2021)..
Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites.Nat. Photon.10, 53–59 (2016)..
Papagiorgis, P., Protesescu, L., Kovalenko, M. V., Othonos, A.&Itskos, G. Long-lived hot carriers in formamidinium lead iodide nanocrystals.J. Phys. Chem. C121, 12434–12440 (2017)..
Chen, J. S., Messing, M. E., Zheng, K. B.&Pullerits, T. Cation-dependent hot carrier cooling in halide perovskite nanocrystals.J. Am. Chem. Soc.141, 3532–3540 (2019)..
Yang, J. F. et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites.Nat. Commun.8, 14120 (2017)..
Mondal, A. et al. Ultrafast exciton many-body interactions and hot-phonon bottleneck in colloidal cesium lead halide perovskite nanocrystals.Phys. Rev. B98, 115418 (2018)..
Hopper, T. R. et al. Hot carrier dynamics in perovskite nanocrystal solids: Role of the cold carriers, nanoconfinement, and the surface.Nano Lett.20, 2271–2278 (2020)..
Dey, A. etal. State of the art and prospects for halide perovskite nanocrystals.ACS Nano15, 10775–10981 (2021)..
Fang, H. -H., Adjokatse, S., Shao, S., Even, J.&Loi, M. A. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites.Nat. Commun.9, 243 (2018)..
Monti, M. et al. Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobility.Phys. Rev. B102, 245204 (2020)..
Verma, S. D., Gu, Q., Sadhanala, A., Venugopalan, V.&Rao, A. Slow carrier cooling in hybrid Pb–Sn halide perovskites.ACS Energy Lett.4, 736–740 (2019)..
Dai, L. et al. Slow carrier relaxation in tin-based perovskite nanocrystals.Nat. Photon.15, 696–702 (2021)..
Jellicoe, T. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals.J. Am. Chem. Soc.138, 2941–2944 (2016)..
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut.Nano Lett.15, 3692–3696 (2015)..
Liu, F. et al. Colloidal synthesis of air-stable alloyed CsSn1–xPbxI3perovskite nanocrystals for use in solar cells.J. Am. Chem. Soc.139, 16708–16719 (2017)..
Liu, F. et al. Near-infrared emission from tin-lead (Sn-Pb) alloyed Perovskite quantum dots by sodium doping.Angew. Chem.132, 8499–8502 (2020)..
Eperon, G. E.&Ginger, D. S. B-site metal cation exchange in halide perovskites.ACS Energy Lett.2, 1190–1196 (2017)..
Hassan, Y. et al. Facile synthesis of stable and highly luminescent methylammonium lead halide nanocrystals for efficient light emitting devices.J. Am. Chem. Soc.141, 1269–1279 (2019)..
Tsai, C. -M. et al. Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode.ACS Energy Lett.1, 1086–1093 (2016)..
Xing, G. C. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science342, 344–347 (2013)..
Ghosh, T., Aharon, S., Shpatz, A., Etgar, L.&Ruhman, S. Reflectivity effects on pump-probe spectra of lead halide perovskites: comparing thin films versus nanocrystals.ACS Nano12, 5719–5725 (2018)..
Liang, W. et al. Efficient optical orientation and slow spin relaxation in lead-free CsSnBr3perovskite nanocrystals.ACS Energy Lett.6, 1670–1676 (2021)..
Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites.Nat. Commun.6, 8420 (2015)..
Wright, A. D. et al. Electron-phonon coupling in hybrid lead halide perovskites.Nat. Commun.7, 11755 (2016)..
Potz, W. Hot-phonon effects in bulk GaAs.Phys. Rev. B36, 5016–5019 (1987)..
Fu, J. H. et al. Hot carrier cooling mechanisms in halide perovskites.Nat. Commun.8, 1300 (2017)..
Nenon, D. P. et al. Design principles for trap-free CsPbX3nanocrystals: enumerating and eliminating surface halide vacancies with softer lewis bases.J. Am. Chem. Soc.140, 17760–17772 (2018)..
Umari, P., Mosconi, E.&De Angelis, F. Infrared dielectric screening determines the low exciton binding energy of metal-halide perovskites.J. Phys. Chem. Lett.9, 620–627 (2018)..
Klemens, P. G. Anharmonic decay of optical phonons.Phys. Rev.148, 845–848 (1966)..
Herz, L. M. How lattice dynamics moderate the electronic properties of metal-halide perovskites.J. Phys. Chem. Lett.9, 6853–6863 (2018)..
Haeger, T., Heiderhoff, R.&Riedl, T. Thermal properties of metal-halide perovskites.J. Mater. Chem. C8, 14289–14311 (2020)..
Handa, T., Yamada, T., Nagai, M.&Kanemitsu, Y. Phonon, thermal, and thermo-optical properties of halide perovskites.Phys. Chem. Chem. Phys.22, 26069–26087 (2020)..
Feng, Y., Lin, S., Green, M.&Conibeer, G. Effect of static carrier screening on the energy relaxation of electrons in polar-semiconductor multiple-quantum-well superlattices.J. Appl. Phys.113, 024317 (2013)..
Lim, J. W. M. et al. Hot carriers in halide perovskites: How hot truly?J. Phys. Chem. Lett.11, 2743–2750 (2020)..
Liu, F. et al. Trioctylphosphine oxide acts as alkahest for SnX2/PbX2: A general synthetic route to perovskite ASnxPb1–xX3(A= Cs, FA, MA; X= Cl, Br, I) quantum dots.Chem. Mater.32, 1089–1100 (2020)..
Savill, K. J., Ulatowski, A. M.&Herz, L. M. Optoelectronic properties of tin–lead halide perovskites.ACS Energy Lett.6, 2413–2426 (2021)..
Wu, X. et al. Trap states in lead iodide perovskites.J. Am. Chem. Soc.137, 2089–2096 (2015)..
Righetto, M. et al. Hot carriers perspective on the nature of traps in perovskites.Nat. Commun.11, 2712 (2020)..
Chen, Y. et al. Multiple exciton generation in tin–lead halide perovskite nanocrystals for photocurrent quantum efficiency enhancement.Nat. Photon.16, 485–490 (2022)..
von der Linde, D.&Lambrich, R. Direct measurement of hot-electron relaxation by picosecond spectroscopy.Phys. Rev. Lett.42, 1090–1093 (1979)..
Ridley, B. K. Hot phonons in high-field transport.Semicond. Sci. Technol.4, 1142 (1989)..
Zanato, D., Balkan, N., Ridley, B. K., Hill, G.&Schaff, W. J. Hot electron cooling rates via the emission of LO-phonons in InN.Semicond. Sci. Technol.19, 1024 (2004)..
Huang, L. -y&Lambrecht, W. R. L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3.Phys. Rev. B88, 165203 (2013)..
Saran, R., Heuer-Jungemann, A., Kanaras, A. G.&Curry, R. J. Giant bandgap renormalization and exciton–phonon scattering in perovskite nanocrystals.Adv. Opt. Mater.5, 1700231 (2017)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution