1.Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
2.Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou 510632, China
3.Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou 510632, China
Zhen Li (ailz268@126.com)
Shenhe Fu (fushenhe@jnu.edu.cn)
Published:30 September 2023,
Published Online:28 August 2023,
Received:26 January 2023,
Revised:05 July 2023,
Accepted:12 July 2023
Scan QR Code
Liu, G. H. et al. Spin-orbit Rabi oscillations in optically synthesized magnetic fields. Light: Science & Applications, 12, 1930-1942 (2023).
Liu, G. H. et al. Spin-orbit Rabi oscillations in optically synthesized magnetic fields. Light: Science & Applications, 12, 1930-1942 (2023). DOI: 10.1038/s41377-023-01238-8.
Rabi oscillation has been proven to be one of the cornerstones of quantum mechanics
triggering substantial investigations in different disciplines and various important applications both in the classical and quantum regimes. So far
two independent classes of wave states in the Rabi oscillations have been revealed as spin waves and orbital waves
while a Rabi wave state simultaneously merging the spin and orbital angular momentum has remained elusive. Here we report on the experimental and theoretical observation and control of spin–orbit-coupled Rabi oscillations in the higher-order regime of light. We constitute a pseudo spin-1/2 formalism and optically synthesize a magnetization vector through light-crystal interaction. We observe simultaneous oscillations of these ingredients in weak and strong coupling regimes
which are effectively controlled by a beam-dependent synthetic magnetic field. We introduce an electrically tunable platform
allowing fine control of transition between different oscillatory modes
resulting in an emission of orbital-angular-momentum beams with tunable topological structures. Our results constitute a general framework to explore spin–orbit couplings in the higher-order regime
offering routes to manipulating the spin and orbital angular momentum in three and four dimensions. The close analogy with the Pauli equation in quantum mechanics
nonlinear optics
etc.
implies that the demonstrated concept can be readily generalized to different disciplines.
Rabi, I. I. Space quantization in a gyrating magnetic field.Phys. Rev.51, 652–654 (1937)..
Vijay, R. et al. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback.Nature490, 77–80 (2012)..
Chang, B. Y., Sola, I. R.&Malinovsky, V. S. Anomalous Rabi oscillations in multilevel quantum systems.Phys. Rev. Lett.120, 133201 (2018)..
Assemat, F. et al. Quantum Rabi oscillations in coherent and in mesoscopic cat field states.Phys. Rev. Lett.123, 143605 (2019)..
Zhang, P. et al. Unveiling chiral phase evolution in Rabi oscillations from a photonic setting.Phys. Rev. Lett.125, 123201 (2020)..
Bludov, Y. V., Konotop, V. V.&Salerno, M. Rabi oscillations of matter-wave solitons in optical lattices.Phys. Rev. A80, 023623 (2009)..
Dudin, Y. O. et al. Observation of coherent many-body Rabi oscillations.Nat. Phys.8, 790–794 (2012)..
Cronenberg, G. et al. Acoustic Rabi oscillations between gravitational quantum states and impact on symmetron dark energy.Nat. Phys.14, 1022–1026 (2018)..
Kartashov, Y. V., Vysloukh, V. A.&Torner, L. Resonant mode oscillations in modulated waveguiding structures.Phys. Rev. Lett.99, 233903 (2007)..
Makris, K. G. et al. Optical transitions and Rabi oscillations in waveguide arrays.Opt. Express16, 10309–10314 (2008)..
Shandarova, K. et al. Experimental observation of Rabi oscillations in photonic lattices.Phys. Rev. Lett.102, 123905 (2009)..
Lin, Y. J., Jiménez-García, K.&Spielman, I. B. Spin-orbit-coupled Bose-Einstein condensates.Nature471, 83–86 (2011)..
Kolkowitz, S. et al. Spin-orbit-coupled fermions in an optical lattice clock.Nature542, 66–70 (2017)..
Bliokh, K. Y. et al. Spin-orbit interactions of light.Nat. Photonics9, 796–808 (2015)..
Barnett, S. M. et al. On the natures of the spin and orbital parts of optical angular momentum.J. Opt.18, 064004 (2016)..
Allen, L. et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.Phys. Rev. A45, 8185–8189 (1992)..
Onoda, M., Murakami, S.&Nagaosa, N. Hall effect of light.Phys. Rev. Lett.93, 083901 (2004)..
Kavokin, A., Malpuech, G.&Glazov, M. Optical spin hall effect.Phys. Rev. Lett.95, 136601 (2005)..
Bliokh, K. Y. Geometrical optics of beams with vortices: berry phase and orbital angular momentum hall effect.Phys. Rev. Lett.97, 043901 (2006)..
Leyder, C. et al. Observation of the optical spin Hall effect.Nat. Phys.3, 628–631 (2007)..
Hosten, O.&Kwiat, P. Observation of the spin hall effect of light via weak measurements.Science319, 787–790 (2008)..
Ling, X. H. et al. Recent advances in the spin Hall effect of light.Rep. Prog. Phys.80, 066401 (2017)..
Fu, S. H. et al. Spin-orbit optical hall effect.Phys. Rev. Lett.123, 243904 (2019)..
Shu, W. X. et al. Three-dimensional spin Hall effect of light in tight focusing.Phys. Rev. A101, 023819 (2020)..
Zhu, W. G. et al. Wave-vector-varying pancharatnam-berry phase photonic spin hall effect.Phys. Rev. Lett.126, 083901 (2021)..
Marrucci, L.,Manzo, C.&Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media.Phys. Rev. Lett.96, 163905 (2006)..
Devlin, R. C. et al. Arbitrary spin–to-orbital angular momentum conversion of light.Science358, 896–901 (2017)..
Du, L. P. et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum.Nat. Phys.15, 650–654 (2019)..
Fang, Y. Q. et al. Photoelectronic mapping of the spin–orbit interaction of intense light fields.Nat. Photonics15, 115–120 (2021)..
Li, F. et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity.Phys. Rev. Lett.110, 196406 (2013)..
Dufferwiel, S. et al. Spin textures of exciton-polaritons in a tunable microcavity with large TE-TM splitting.Phys. Rev. Lett.115, 246401 (2015)..
Karnieli, A. et al. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect.Nat. Commun.12, 1092 (2021)..
Karnieli, A., Li, Y. Y.&Arie, A. The geometric phase in nonlinear frequency conversion.Front. Phys.17, 12301 (2022)..
Suchowski, H., Porat, G.&Arie, A. Adiabatic processes in frequency conversion.Laser Photonics Rev.8, 333–367 (2014)..
Yesharim, O. et al. Observation of the all-optical Stern–Gerlach effect in nonlinear optics.Nat. Photonics16, 582–587 (2022)..
Peng, P. et al. Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances.Phys. Rev. Lett.119, 233901 (2017)..
Ikuta, R. et al. Cavity-enhanced broadband photonicRabi oscillation.Phys. Rev. A103, 033709 (2021)..
Feynman, R. P., Vernon, F. L. Jr&Hellwarth, R. W. Geometrical representation of the schrödinger equation for solving maser problems.J. Appl. Phys.28, 49–52 (1957)..
Forbes, A., de Oliveira, M.&Dennis, M. R. Structured light.Nat. Photonics15, 253–262 (2021)..
Wang, X. W. et al. Recent advances on optical vortex generation.Nanophotonics7, 1533–1556 (2018)..
Shen, Y. J. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities.Light8, 90 (2019)..
Chen, J., Wan, C. H.&Zhan, Q. W. Engineering photonic angular momentum with structured light: a review.Adv. Photonics3, 064001 (2021)..
Hu, Y. W. et al. Subwavelength generation of nondiffracting structured light beams.Optica7, 1261–1266 (2020)..
Mirhosseini, M. et al. Efficient separation of the orbital angular momentum eigenstates of light.Nat. Commun.4, 2781 (2013)..
Zhao, Y. F.&Wang, J. High-base vector beam encoding/decoding for visible-light communications.Opt. Lett.40, 4843–4846 (2015)..
Naidoo, D. et al. Controlled generation of higher-order Poincaré sphere beams from a laser.Nat. Photonics10, 327–332 (2016)..
Brasselet, E. et al. Dynamics of optical spin-orbit coupling in uniaxial crystals.Opt. Lett.34, 1021–1023 (2009)..
Zhu, W. G.&Shen, W. L. Electrically controlling spin and orbital angular momentum of a focused light beam in a uniaxial crystal.Opt. Express20, 25876–25883 (2012)..
Bliokh, K. Y. et al. Spin-Hall effect and circular birefringence of a uniaxial crystal plate.Optica3, 1039–1047 (2016)..
Guo, C. H. et al. Dynamic control of cylindrical vector beams via anisotropy.Opt. Express26, 18721–18733 (2018)..
Kobayashi, Y. et al. Polarization flipping of even-order harmonics in monolayer transition-metal dichalcogenides.Ultrafast Sci.2021, 9820716 (2021)..
Scully, M. O., Lamb, W. E. Jr&Barut, A. On the theory of the stern-gerlach apparatus.Found. Phys.17, 575–583 (1987)..
Everschor-Sitte, K.&Sitte, M. Real-space berry phases: skyrmion soccer (invited).J. Appl. Phys.115, 172602 (2014)..
Chen, G. Y. et al. Advances in lithium niobate photonics: development status and perspectives.Adv. Photonics4, 034003 (2022)..
Chen, W. T. et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces.Light6, e16259 (2017)..
Tang, Y. T. et al. Harmonic spin-orbit angular momentum cascade in nonlinear optical crystals.Nat. Photonics14, 658–662 (2020)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution