1.State Key Laboratory of Surface Physics, Key Laboratory of Micro and NanoPhotonic Structures (Ministry of Education), and Department of Physics, Fudan University, 200433 Shanghai, China
2.Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, 100081 Beijing, China
3.Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081 Beijing, China
4.National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, 210093 Nanjing, China
5.Atom Manufacturing Institute (AMI), 211805 Nanjing, China
6.Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 211805 Nanjing, China
Chong Wang (chongwang@bit.edu.cn)
Fucong Fei (feifucong@nju.edu.cn)
Hugen Yan (hgyan@fudan.edu.cn)
Published:30 September 2023,
Published Online:09 August 2023,
Received:01 April 2023,
Revised:20 July 2023,
Accepted:23 July 2023
Scan QR Code
Xie, Y. G. et al. Tunable optical topological transitions of plasmon polaritons in WTe2 van der Waals films. Light: Science & Applications, 12, 1807-1817 (2023).
Xie, Y. G. et al. Tunable optical topological transitions of plasmon polaritons in WTe2 van der Waals films. Light: Science & Applications, 12, 1807-1817 (2023). DOI: 10.1038/s41377-023-01244-w.
Naturally existing in-plane hyperbolic polaritons and the associated optical topological transitions
which avoid th
e nano-structuring to achieve hyperbolicity
can outperform their counterparts in artificial metasurfaces. Such plasmon polaritons are rare
but experimentally revealed recently in WTe
2
van der Waals thin films. Different from phonon polaritons
hyperbolic plasmon polaritons originate from the interplay of free carrier Drude response and interband transitions
which promise good intrinsic tunability. However
tunable in-plane hyperbolic plasmon polariton and its optical topological transition of the isofrequency contours to the elliptic topology in a natural material have not been realized. Here we demonstrate the tuning of the optical topological transition through Mo doping and temperature. The optical topological transition energy is tuned over a wide range
with frequencies ranging from 429 cm
−1
(23.3 microns) for pure WTe
2
to 270 cm
−1
(37.0 microns) at the 50% Mo-doping level at 10 K. Moreover
the temperature-induced blueshift of the optical topological transition energy is also revealed
enabling active and reversible tuning. Surprisingly
the localized surface plasmon resonance in skew ribbons shows unusual polarization dependence
accurately manifesting its topology
which renders a reliable means to track the topology with far-field techniques. Our results open an avenue for reconfigurable photonic devices capable of plasmon polariton steering
such as canaling
focusing
and routing
and pave the way for low-symmetry plasmonic nanophotonics based on anisotropic natural materials.
High, A. A. et al. Visible-frequency hyperbolic metasurface.Nature522, 192–196 (2015)..
Yang, Y. H. et al. Hyperbolic spoof plasmonic metasurfaces.NPG Asia Mater.9, e428 (2017)..
Li, P. N. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization.Nat. Commun.11, 3663 (2020)..
Martín-Sánchez, J. et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas.Sci. Adv.7, eabj0127 (2021)..
Zheng, Z. B. et al. Controlling and focusing in-plane hyperbolic phonon polaritons in α-MoO3with a curved plasmonic antenna.Adv. Mater.34, 2104164 (2022)..
Sreekanth, K. V. et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials.Nat. Mater.15, 621–627 (2016)..
Lu, D. et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials.Nat. Nanotechnol.9, 48–53 (2014)..
Poddubny, A. et al. Hyperbolic metamaterials.Nat. Photonics7, 948–957 (2013)..
Shekhar, P., Atkinson, J.&Jacob, Z. Hyperbolic metamaterials: fundamentals and applications.Nano Converg.1, 14 (2014)..
Ma, W. L. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal.Nature562, 557–562 (2018)..
Zheng, Z. B. et al. A mid-infrared biaxial hyperbolic van der Waals crystal.Sci. Adv.5, eaav8690 (2019)..
Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation.Nat. Mater.19, 964–968 (2020)..
Wang, C. et al. Van der Waals thin films of WTe2for natural hyperbolic plasmonic surfaces.Nat. Commun.11, 1158 (2020)..
Zhang, Q. et al. Interface nano-optics with van der Waals polaritons.Nature597, 187–195 (2021)..
Hu, G. W. et al. Phonon polaritons and hyperbolic response in van der Waals materials.Adv. Opt. Mater.8, 1901393 (2020)..
Li, P. N. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials.Science359, 892–896 (2018)..
Dai, Z. G. et al. Artificial metaphotonics born naturally in two dimensions.Chem. Rev.120, 6197–6246 (2020)..
Lee, D. et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials.eLight2, 1 (2022)..
Krasnok, A.&Alù, A. Low-symmetry nanophotonics.ACS Photonics9, 2–24 (2022)..
Krishnamoorthy, H. N. S. et al. Topological transitions in metamaterials.Science336, 205–209 (2012)..
Zhang, Q. et al. Hybridized hyperbolic surface phonon polaritons at α-MoO3and polar dielectric interfaces.Nano Lett.21, 3112–3119 (2021)..
Duan, J. et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition.Sci. Adv.7, eabf2690 (2021)..
Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials.Nat. Commun.9, 4371 (2018)..
Dai, S. Y. et al. Phase-change hyperbolic heterostructures for nanopolaritonics: a case study of hBN/VO2.Adv. Mater.31, 1900251 (2019)..
Zeng, Y. L. et al. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals.Nano Lett.10, 4260–4268 (2022)..
Ruta, F. L. et al. Surface plasmons induce topological transition in graphene/α-MoO3heterostructures.Nat. Commun.13, 3719 (2022)..
Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial.Nat. Nanotechnol.10, 682–686 (2015)..
Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons.Science379, 558–561 (2023)..
Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3heterostructures.Nat. Nanotechnol.17, 940–946 (2022)..
Hu, G. W. et al. Topological polaritons and photonic magic angles in twisted α-MoO3bilayers.Nature582, 209–213 (2020)..
Chen, M. Y. et al. Configurable phonon polaritons in twisted α-MoO3.Nat. Mater.19, 1307–1311 (2020)..
Duan, J. H. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs.Nano Lett.20, 5323–5329 (2020)..
Zheng, Z. B. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals.Nano Lett.20, 5301–5308 (2020)..
Wu, Y. J. et al. Chemical switching of low-loss phonon polaritons in α-MoO3by hydrogen intercalation.Nat. Commun.11, 2646 (2020)..
Basov, D. N., Fogler, M. M.&García de Abajo, F. J. Polaritons in van der Waals materials.Science354, eaag1992 (2016)..
Low, T. et al. Polaritons in layered two-dimensional materials.Nat. Mater.16, 182–194 (2017)..
Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials.Nat. Nanotechnol.6, 630–634 (2011)..
Nemilentsau, A., Low, T.&Hanson, G. Anisotropic 2D materials for tunable hyperbolic plasmonics.Phys. Rev. Lett.116, 066804 (2016)..
Torbatian, Z., Novko, D.&Asgari, R. Tunable low-loss hyperbolic plasmon polaritons in a Td-WTe2single layer.Phys. Rev. Appl.14, 044014 (2020)..
Belopolski, I. et al. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1-xTe2.Nat. Commun.7, 13643 (2016)..
Chang, T. R. et al. Prediction of an arc-tunable Weyl fermion metallic statein MoxW1-xTe2.Nat. Commun.7, 10639 (2016)..
Fu, D. Z. et al. Tuning the electrical transport of type Ⅱ Weyl semimetal WTe2nanodevices by Mo doping.Nanotechnology29, 135705 (2018)..
Rhodes, D. et al. Engineering the structural and electronic phases of MoTe2through W substitution.Nano Lett.17, 1616–1622 (2017)..
Roberts, J. A. et al. Tunable hyperbolic metamaterials based on self-assembled carbon nanotubes.Nano Lett.19, 3131–3137 (2019)..
Frenzel, A. J. et al. Anisotropic electrodynamics of type-Ⅱ Weyl semimetal candidate WTe2.Phys. Rev. B95, 245140 (2017)..
Wu, Y. et al. Temperature-induced Lifshitz transition in WTe2.Phys. Rev. Lett.115, 166602 (2015)..
S, S. et al. Interband scattering across the Lifshitz transition in WTe2.Phys. Rev. B106, 115421 (2022)..
Hu, G. W. et al. Moiré hyperbolic metasurfaces.Nano Lett.20, 3217–3224 (2020)..
Xu, W. D., Xie, L. J.&Ying, Y. B. Mechanisms and applications of terahertz metamaterial sensing: a review.Nanoscale9, 13864–13878 (2017)..
Niu, X. X. et al. Epsilon-near-zero photonics: a new platform for integrated devices.Adv. Opt. Mater.6, 1701292 (2018)..
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging.Nature487, 82–85 (2012)..
Yan, H. G. et al. Tunable infrared plasmonic devices using graphene/insulator stacks.Nat. Nanotechnol.7, 330–334 (2012)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution