Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
Michael Sumetsky (m.sumetsky@aston.ac.uk)
Published:30 September 2023,
Published Online:18 August 2023,
Received:05 April 2023,
Revised:26 July 2023,
Accepted:28 July 2023
Scan QR Code
Vassiliev, V. & Sumetsky, M. High Q-factor reconfigurable microresonators induced in side-coupled optical fibres. Light: Science & Applications, 12, 1867-1876 (2023).
Vassiliev, V. & Sumetsky, M. High Q-factor reconfigurable microresonators induced in side-coupled optical fibres. Light: Science & Applications, 12, 1867-1876 (2023). DOI: 10.1038/s41377-023-01247-7.
High Q-factor monolithic optical microresonators found numerous applications in classical and quantum optical signal processing
microwave photonics
ultraprecise sensing
as well as fundamental optical and physical sciences. However
due to the solid structure of these microresonators
attaining the free spectral range tunability of most of them
critical for several of these applications
was
so far
unfeasible. To address this problem
here we experimentally demonstrate that the side-coupling of coplanar bent optical fibres can induce a high Q-factor whispering gallery mode optical microresonator. By changing the curvature radius of fibres from the centimetre order to the millimetre order
we demonstrate fully mechanically reconfigurable optical microresonators with dimensions varying from the millimetre order to 100-micron order and free spectral range varying from a picometre to ten picometre order. The developed theory describes the formation of the discovered microresonators and their major properties in a reasonable agreement with the experimental data. The new microresonators may find applications in cavity QED
microresonator optomechanics
frequency comb generation with tuneable repetition rate
tuneable lasing
and tuneable processing and delay of optical pulses.
Bogaerts, W. et al. Programmable photonic circuits.Nature586, 207–216 (2020)..
Siew, S. Y. et al. Review of silicon photonics technology and platform development.J. Lightwave Technol.39, 4374–4389 (2021)..
Lu, Z. Q. et al. Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability.Opt. Express25, 9712–9733 (2017)..
Lian, C. Y. et al. Photonic (computational) memories: tunable nanophotonics for data storage and computing.Nanophotonics11, 3823–3854 (2022)..
Ko, J. H. et al. A review of tunable photonics: optically active materials and applications from visible to terahertz.iScience25, 104727 (2022)..
Savchenkov, A. A. et al. Tunable filter based on whispering gallery modes.Electron. Lett.39, 389–391 (2003)..
Armani, D. et al. Electrical thermo-optic tuning of ultrahigh-Qmicrotoroid resonators.Appl. Phys. Lett.85, 5439–5441 (2004)..
Pöllinger, M. et al. Ultra-high-Qtunable whispering-gallery-mode microresonator.Phys. Rev. Lett.103, 053901 (2009)..
Sumetsky, M., Dulashko, Y.&Windeler, R. S. Super free spectral range tunable optical microbubble resonator.Opt. Lett.35, 1866–1868 (2010)..
Kovach, A. et al. Optically tunable microresonator using an azobenzene monolayer.AIP Adv.10, 045117 (2020)..
Buck, J. R.&Kimble, H. J. Optimal sizes of dielectric microspheres for cavity QED with strong coupling.Phys. Rev. A67, 033806 (2003)..
Pfeifer, H. et al. Achievements and perspectives of optical fiber Fabry–Perot cavities.Appl. Phys. B128, 29 (2022)..
Bahl, G. et al. Stimulated optomechanical excitation of surface acoustic waves in a microdevice.Nat. Commun.2, 403 (2011)..
Lambert, N. J. et al. Coherent conversion between microwave and optical photons—an overview of physical implementations.Adv. Quant. Technol.3, 1900077 (2020)..
Bao, H. L. et al. Laser cavity-soliton microcombs.Nat. Photon.13, 384–389 (2019)..
Chang, L., Liu, S. T.&Bowers, J. E. Integrated optical frequency comb technologies.Nat. Photon.16, 95–108 (2022)..
Wang, X. Y. et al. Continuously tunable ultra-thin silicon waveguide optical delay line.Optica4, 507–515 (2017)..
Zhang, W., Yao, J. N.&Zhao, Y. S. Organic micro/nanoscale lasers.Acc. Chem. Res.49, 1691–1700 (2016)..
Zhu, S. et al. All-optical Tunable microlaser based on an ultrahigh-Qerbium-doped hybrid microbottle cavity.ACS Photon.5, 3794–3800 (2018)..
Zhu, S. et al. Tunable Brillouin and Raman microlasers using hybrid microbottle resonators.Nanophotonics8, 931–940 (2019)..
Yang, X. et al. Fiber optofluidic microlasers: structures, characteristics, and applications.Laser Photon. Rev.16, 2100171 (2022)..
Greuter, L. et al. A small mode volume tunable microcavity: development and characterization.Appl. Phys. Lett.105, 121105 (2014)..
Flågan, S. et al. Microcavity platform for widely tunable optical double resonance.Optica9, 1197–1209 (2022)..
Sumetsky, M. Theory of SNAP devices: basic equations and comparison with the experiment.Opt. Express20, 22537–22554 (2012)..
Sumetsky, M. Optical bottle microresonators.Prog. Quant. Electron.64, 1–30 (2019)..
Dmitriev, A., Toropov, N.&Sumetsky, M. Transient reconfigurable subangstrom-precise photonic circuits at the optical fiber surface. 2015 IEEE Photonics Conference (IPC). 1–2 (IEEE, Reston, VA, USA, 2015).
Bochek, D. et al. SNAP microresonators introduced by strong bending of optical fibers.Opt. Lett.44, 3218–3221 (2019)..
Sumetsky, M.&Dulashko, Y. Radius variation of optical fibers with angstrom accuracy.Opt. Lett.35, 4006–4008 (2010)..
Kudashkin, D. V. et al. Reflection of whispering gallery modes propagating on a surface of an optical fiber from its cleave.Opt. Express28, 34530–34535 (2020)..
Sumetsky, M. Delay of light in an optical bottle resonator with nanoscale radius variation: dispersionless, broadband, and low loss.Phys. Rev. Lett.111, 163901 (2013)..
Toropov, N. et al. Microresonator devices lithographically introduced at the optical fiber surface.Opt. Lett.46, 1784–1787 (2021)..
Snyder, A. W.&Love, J. D. Optical Waveguide Theory. (Springer, New York, 1983).
Vitullo, D. L. P. et al. Coupling between waveguides and microresonators: the local approach.Opt. Express28, 25908–25914 (2020)..
Mahaux, C.&Weidenmüller, H. A. Shell-Model Approach to Nuclear Reactions. (Amsterdam, London, North-Holland Pub. Co., 1969).
Dittes, F. M. The decay of quantum systems with a small number of open channels.Phys. Rep.339, 215–316 (2000)..
Sumetsky, M. Mahaux-Weidenmüller approach to cavity quantum electrodynamics and complete resonant down-conversion of the single-photon frequency.Phys. Rev. A100, 013801 (2019)..
Cohen-Tannoudji, C., Diu, B.&Laloë, F. Quantum Mechanics. (John Wiley&Sons, New York, 1977).
Little, B. E., Laine, J. P.&Haus, H. A. Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators.J. Lightwave Technol.17, 704–715 (1999)..
Sumetsky, M. Fundamental limit of microresonator field uniformity and slow light enabled ultraprecise displacement metrology.Opt. Lett.46, 1656–1659 (2021)..
Yang, Y., Crespo-Ballesteros, M.&Sumetsky, M. Experimental demonstration of a bat microresonator. 2021 Conference on Lasers and Electro-Optics Europe&European Quantum Electronics Conference (CLEO/Europe-EQEC). (IEEE, Munich, Germany, 2021).
Chang, D. E. et al.Colloquium: quantum matter built from nanoscopic lattices of atoms and photons.Rev. Mod. Phys.90, 031002 (2018)..
Suchkov, S. V., Sumetsky, M.&Sukhorukov, A. A. Frequency comb generation in SNAP bottle resonators.Opt. Lett.42, 2149–2152 (2017)..
Savchenkov, A. A., Matsko, A. B.&Maleki, L. White-light whispering gallery mode resonators.Opt. Lett.31, 92–94 (2006)..
Li, Y. C. et al. Whispering gallery mode hybridization in photonic molecules.Laser Photon. Rev.11, 1600278 (2017)..
Matsko, A. B.&Ilchenko, V. S. Optical resonators with whispering-gallery modes-part I: basics.IEEE J. Sel. Top. Quant. Electron.12, 3–14 (2006)..
Gorodetsky, M. L., Pryamikov, A. D.&Ilchenko, V. S. Rayleigh scattering in high-Qmicrospheres.J. Opt. Soc. Am. B17, 1051–1057 (2000)..
Crespo-Ballesteros, M. et al. Four-port SNAP microresonator device.Opt. Lett.44, 3498–3501 (2019)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution