1.Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
2.Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
3.Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife-PE, Brazil
4.School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
5.The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2BW, UK
Luca Sortino (luca.sortino@physik.uni-muenchen.de)
Published:30 September 2023,
Published Online:24 August 2023,
Received:25 April 2023,
Revised:25 July 2023,
Accepted:30 July 2023
Scan QR Code
Sortino, L. et al. Radiative suppression of exciton–exciton annihilation in a two-dimensional semiconductor. Light: Science & Applications, 12, 1911-1920 (2023).
Sortino, L. et al. Radiative suppression of exciton–exciton annihilation in a two-dimensional semiconductor. Light: Science & Applications, 12, 1911-1920 (2023). DOI: 10.1038/s41377-023-01249-5.
Two-dimensional (2D) semiconductors possess strongly bound excitons
opening novel opportunities for engineering light–matter interaction at the nanoscale. However
their in-plane confinement leads to large non-radiative exciton–exciton annihilation (EEA) processes
setting a fundamental limit for their photonic applications. In this work
we demonstrate suppression of EEA via enhancement of light–matter interaction in hybrid 2D semiconductor–dielectric nanophotonic platforms
by coupling excitons in WS
2
monolayers with optical Mie resonances in dielectric nanoantennas. The hybrid system reaches an intermediate light–matter coupling regime
with photoluminescence enhancement factors up to 10
2
. Probing the exciton ultrafast dynamics reveal suppressed EEA for coupled excitons
even under high exciton densities
>
10
12
cm
−2
. We extract EEA coefficients in the order of 10
−3
compared to 10
−2
for uncoupled monolayers
as well as a Purcell factor of 4.5. Our results highlight engineering the photonic environment as a route to achieve higher quantum efficiencies
for low-power hybrid devices
and larger exciton densities
towards strongly correlated excitonic phases in 2D semiconductors.
Klingshirn, C. F.Semiconductor Optics4th edn (Springer, 2012. )
Efros, A. L.&Nesbitt, D. J. Origin and control of blinking in quantum dots.Nat. Nanotechnol.11, 661–671 (2016)..
Shen, Y. C. et al. Auger recombination in InGaN measured by photoluminescence.Appl. Phys. Lett.91, 141101 (2007)..
Wang, F. et al. Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes.Phys. Rev. B70, 241403 (2004)..
Yu, Y. L. et al. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers.Phys. Rev. B93, 201111 (2016)..
Mak,K. F.&Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalco-genides.Nat. Photonics10, 216–226 (2016)..
Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides.Rev. Mod. Phys.90, 021001 (2018)..
Rodin, A. et al. Collective excitations in 2D materials.Nat. Rev. Phys.2, 524–537 (2020)..
Turunen, M. et al. Quantum photonics with layered 2D materials.Nat. Rev. Phys.4, 219–236 (2022)..
Kumar, N. et al. Exciton-exciton annihilation in MoSe2monolayers.Phys. Rev. B89, 125427 (2014)..
Sun, D. Z. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide.Nano Lett.14, 5625–5629 (2014)..
Yuan, L.&Huang, L. B. Exciton dynamics and annihilation in WS22D semiconductors.Nanoscale7, 7402–7408 (2015)..
Mouri, S. et al. Nonlinear photoluminescence in atomically thin layered WSe2arising from diffusion-assisted exciton-exciton annihilation.Phys. Rev. B90, 155449 (2014)..
Hoshi, Y. et al. Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides.Phys. Rev. B95, 241403(R) (2017)..
Lien, D. H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors.Science364, 468–471 (2019)..
Kim, H. et al. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors.Science373, 448–452 (2021)..
Han, B. et al. Exciton states in monolayer MoSe2and MoTe2probed by upconversion spectroscopy.Phys. Rev. X8, 031073 (2018)..
Binder, J. et al. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures.Nat. Commun.10, 2335 (2019)..
Linardy, E. et al. Harnessing exciton-exciton annihilation in two-dimensional semiconductors.Nano Lett.20, 1647–1653 (2020)..
Lin, K. Q. et al. Narrow-band high-lying excitons with negative-mass electrons in monolayer WSe2.Nat. Commun.12, 5500 (2021)..
Lepeshov, S. et al. Tunable resonance coupling in single Si nanoparticle-monolayer WS2structures.ACS Appl. Mater. Interfaces10, 16690–16697 (2018)..
Ao, X. Y. et al. Unidirectional enhanced emission from 2D monolayer suspended by dielectric pillar array.ACS Appl. Mater. Interfaces10, 34817–34821 (2018)..
Sortino, L. et al. Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas.Nat. Commun.10, 5119 (2019)..
Yuan, L. et al. Manipulation of exciton dynamics in single-layer WSe2using a toroidal dielectric metasurface.Nano Lett.21, 9930–9938 (2021)..
Fang, J. et al. Room-temperature observation of near-intrinsic exciton linewidth in monolayer WS2.Adv. Mater.34, 2108721 (2022)..
Zotev, P. G. et al. Transition metal dichalcogenide dimer nanoantennas for tailored light-matter interactions.ACS Nano16, 6493–6505 (2022)..
Petrić, M. M. et al. Tuning the optical properties of a MoSe2monolayer using nanoscale plasmonic antennas.Nano Lett.22, 561–569 (2022)..
Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2to plasmonic nanocavities.Nat. Nanotechnol.13, 1137–1142 (2018)..
Sortino, L. et al. Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas.Nat. Commun.12, 6063 (2021)..
Evlyukhin, A. B. et al. Optical response features of Si-nanoparticle arrays.Phys. Rev. B82, 045404 (2010)..
García-Etxarri, A. et al. Strong magnetic response of submicron Silicon particles in the infrared.Opt. Express19, 4815–4826 (2011)..
Krasnok, A. E. et al. Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles.JETP Lett.94, 593–598 (2011)..
Krasnok, A. E. et al. All-dielectric optical nanoantennas.Opt. Express20, 20599–20604 (2012)..
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures.Science354, aag2472 (2016)..
Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks.ACS Nano7, 7824–7832 (2013)..
Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles.Nat. Commun.6, 8069 (2015)..
Cortés, E. et al. Optical metasurfaces for energy conversion.Chem. Rev.122, 15082–15176 (2022)..
Cambiasso, J. et al. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas.Nano Lett.17, 1219–1225 (2017)..
Uddin, S. Z., Rabani, E.&Javey, A. Universal inverse scaling of exciton-exciton annihilation coefficient with exciton lifetime.Nano Lett.21, 424–429 (2021)..
Sortino, L. et al. Dielectric nanoantennas for strain engineering in atomically thin two-dimensional semiconductors.ACS Photonics7, 2413–2422 (2020)..
Pelton, M., Storm, S. D.&Leng, H. X. Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting.Nanoscale11, 14540–14552 (2019)..
Koenderink, A. F. Single-photon nanoantennas.ACS Photonics4, 710–722 (2017)..
Niehues, I. et al. Strain control of exciton-phonon coupling in atomically thin semiconductors.Nano Lett.18, 1751–1757 (2018)..
Trovatello, C. et al. The ultrafast onset of exciton formation in 2D semiconductors.Nat. Commun.11, 5277 (2020)..
Rosati, R. et al. Dark exciton anti-funneling in atomically thin semiconductors.Nat. Commun.12, 7221 (2021)..
Steinhoff, A., Jahnke, F.&Florian, M. Microscopic theory of exciton-exciton annihilation in two-dimensional semiconductors.Phys. Rev. B104, 155416 (2021)..
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials.Nat. Commun.8, 15251 (2017)..
Dal Conte, S. et al. Ultrafast photophysics of 2D semiconductors and related heterostructures.Trends Chem.2, 28–42 (2020)..
Trovatello, C. et al. Disentangling many-body effects in the coherent optical response of 2D semiconductors.Nano Lett.22, 5322–5329 (2022)..
Ceballos, F. et al. Exciton formation in monolayer transition metal dichalcogenides.Nanoscale8, 11681–11688 (2016)..
Cunningham, P. D., McCreary, K. M.&Jonker, B. T. Auger recombination in chemical vapor deposition-grown monolayer WS2.J. Phys. Chem. Lett.7, 5242–5246 (2016)..
Wang, H. N., Zhang, C. J.&Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.Nano Lett.15, 339–345 (2015)..
Ceballos, F.&Zhao, H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene.Adv. Funct. Mater.27, 1604509 (2017)..
Shah, J.Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures(Springer, 1996).
Estrada-Real, A. et al. Probing the optical near-field interaction of Mie nanoresonators with atomically thin semiconductors.Commun. Phys.6, 102 (2023)..
Kühner, L. et al. High-Q nanophotonics over the full visible spectrum enabled by hexagonal boron nitride metasurfaces.Adv. Mater.35, 2209688 (2023)..
Mak, K. F.&Shan, J. Semiconductor moiré materials.Nat. Nanotechnol.17, 686–695 (2022)..
Lin, H. et al. Engineering van der Waals materials for advanced metaphotonics.Chem. Rev.122, 15204–15355 (2022)..
Weber, T. et al. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces.Nat. Mater.22, 970–976 (2023)..
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping.2D Mater.1, 011002 (2014)..
Tilmann, B. et al. Nanostructured amorphous gallium phosphide on silica for nonlinear and ultrafast nanophotonics.Nanoscale Horiz.5, 1500–1508 (2020)..
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution