1.State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China
3.Institute of Microelectronics and Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 Gansu, China
4.State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Yong Zhang (yongzhang@sjtu.edu.cn)
Yikai Su (yikaisu@sjtu.edu.cn)
Published:30 September 2023,
Published Online:29 August 2023,
Received:06 February 2023,
Revised:14 July 2023,
Accepted:03 August 2023
Scan QR Code
Zhang, Y. et al. High-speed electro-optic modulation in topological interface states of a one-dimensional lattice. Light: Science & Applications, 12, 1961-1970 (2023).
Zhang, Y. et al. High-speed electro-optic modulation in topological interface states of a one-dimensional lattice. Light: Science & Applications, 12, 1961-1970 (2023). DOI: 10.1038/s41377-023-01251-x.
Electro-optic modulators are key components in data communication
microwave photonics
and quantum photonics. Modulation bandwidth
energy efficiency
and device dimension are crucial metrics of modulators. Here
we provide an important direction for the miniaturization of electro-optic modulators by reporting on ultracompact topological modulators. A topological interface state in a one-dimensional lattice is implemented on a thin-film lithium-niobate integrated platform. Due to the strong optical confinement of the interface state and the peaking enhancement of the electro-optic response
a topological cavity with a size of 1.6 × 140 μm
2
enables a large modulation bandwidth of 104 GHz. The first topological modulator exhibits the most compact device size compared to reported LN modulators with bandwidths above 28 GHz
to the best of our knowledge. 100 Gb/s non-return-to-zero and 100 Gb/s four-level pulse amplitude modulation signals are generated. The switching energy is 5.4 fJ/bit
owing to the small electro-optic mode volume and low capacitance. The topological modulator accelerates the response time of topological photonic devices from the microsecond order to the picosecond order and provides an essential foundation for the implementation of large-scale lithium-niobate photonic integrated circuits.
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages.Nature562, 101–104 (2018)..
Sun, D. H. et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications.Light Sci. Appl.9, 197 (2020)..
Zhang, M. et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability.Optica8, 652–667 (2021)..
He, M. B. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1and beyond.Nat. Photonics13, 359–364 (2019)..
Li, M. X. et al. Lithium niobate photonic-crystal electro-optic modulator.Nat. Commun.11, 4123 (2020)..
Xu, M. Y. et al. High-performance coherent optical modulators based on thin-film lithium niobate platform.Nat. Commun.11, 3911 (2020)..
Liu, J. Q. et al. Monolithic piezoelectric control of soliton microcombs.Nature583, 385–390 (2020)..
Kharel, P. et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes.Optica8, 357–363 (2021)..
Xue, Y. et al. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate.Optica9, 1131–1137 (2022)..
Wang, C. et al. Nanophotonic lithium niobate electro-optic modulators.Opt. Express26, 1547–1555 (2018)..
Jiang, Y. H. et al. Monolithic photonic integrated circuit based on silicon nitride and lithium niobate on insulator hybrid platform.Adv. Photonics Res.3, 2200121 (2022)..
Pan, B. C. et al. Ultra-compact lithium niobate microcavity electro-optic modulator beyond 110 GHz.Chip1, 100029 (2022)..
Churaev, M. et al. Heterogeneously integrated lithium niobate photonics. 2022 Conference on Lasers and Electro-Optics. San Jose, CA, USA: IEEE, 1–2 (2022).
Fathololoumi, S. et al. 1.6 Tbps silicon photonics integrated circuit and 800 gbps photonic engine for switch co-packaging demonstration.J. Light. Technol.39, 1155–1161 (2021)..
Haldane, F. D. M. Model for a quantum hall effect without landau levels: condensed-matter realization of the "parity anomaly".Phys. Rev. Lett.61, 2015–2018 (1988)..
Goldman, N., Budich, J. C.&Zoller, P. Topological quantum matter with ultracold gases in optical lattices.Nat. Phys.12, 639–645 (2016)..
Fleury, R. et al. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator.Science343, 516–519 (2014)..
Mousavi, S. H., Khanikaev, A. B.&Wang, Z. Topologically protected elastic waves in phononic metamaterials.Nat. Commun.6, 8682 (2015)..
Lu, L., Joannopoulos, J. D.&Soljačić, M. Topological photonics.Nat. Photonics8, 821–829 (2014)..
Wang, K. et al. Topological complex-energy braiding of non-Hermitian bands.Nature598, 59–64 (2021)..
Ota, Y. et al. Topological photonic crystal nanocavity laser.Commun. Phys.1, 86 (2018)..
Tang, G. J. et al. Topological photonic crystals: physics, designs, and applications.Laser Photonics Rev.16, 2100300 (2022)..
Mittal, S., Goldschmidt, E. A.&Hafezi, M. A topological source of quantum light.Nature561, 502–506 (2018)..
Jia, H. W. et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials.Science363, 148–151 (2019)..
Baboux, F. et al. Measuring topological invariants from generalized edge states in polaritonic quasicrystals.Phys. Rev. B95, 161114 (2017)..
Gu, L. P. et al. Fano resonance from a one-dimensional topological photonic crystal.APL Photonics6, 086105 (2021)..
He, X. T. et al. A silicon-on-insulator slab for topological valley transport.Nat. Commun.10, 872 (2019)..
Wang, H. W. et al. Asymmetric topological valley edge states on silicon-on-insulator platform.Laser Photonics Rev.16, 2100631 (2022)..
Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in thecontinuum.Nat. Photonics14, 623–628 (2020)..
Chen, Y. et al. Topologically protected valley-dependent quantum photonic circuits.Phys. Rev. Lett.126, 230503 (2021)..
Tambasco, J. L. et al. Quantum interference of topological states of light.Sci. Adv.4, eaat3187 (2018)..
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice.Nat. Photonics11, 651–656 (2017)..
Wang, H. W. et al. Ultracompact topological photonic switch based on valley-vortex-enhanced high-efficiency phase shift.Light Sci. Appl.11, 292 (2022)..
Li, C. et al. Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator.Adv. Opt. Mater.6, 1701071 (2018)..
Raman, A.&Fan, S. H. Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem.Phys. Rev. Lett.104, 087401 (2010)..
Zak, J. Berry's phase for energy bands in solids.Phys. Rev. Lett.62, 2747–2750 (1989)..
Xiao, M., Zhang, Z.&Chan, C. Surface impedance and bulk band geometric phases in one-dimensional systems.Phys. Rev. X4, 021017 (2014)..
Cheben, P. et al. Subwavelength integrated photonics.Nature560, 565–572 (2018)..
Liang, H. X. et al. High-quality lithium niobate photonic crystal nanocavities.Optica4, 1251–1258 (2017)..
Ahmed, A. N. R. et al. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform.Opt. Express27, 30741–30751 (2019)..
Powell, K. et al. Integrated silicon carbide electro-optic modulator.Nat. Commun.13, 1851 (2022)..
Müller, J. et al. Optical peaking enhancement in high-speed ring modulators.Sci. Rep.4, 6310 (2014)..
Sun, J. et al. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning.J. Light. Technol.37, 110–115 (2019)..
Zhang, Y. G. et al. 200 Gbit/s optical PAM4 modulation based on silicon microring modulator. 2020 European Conference on Optical Communications. Brussels: IEEE, 1–4 (2020).
Pohl, D. et al. 100-GBd waveguide bragg grating modulator in thin-film lithium niobate.IEEE Photon. Technol. Lett.33, 85–88 (2021)..
Zhang, J. X. et al. Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity.Opt. Express30, 20839–20846 (2022)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution