1.College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2.Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024 Zhejiang, China
3.Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024 Zhejiang, China
4.College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
5.Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
6.Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
Jiyong Wang (jiyongwang@hdu.edu.cn)
Min Qiu (qiumin@westlake.edu.cn)
Published:30 September 2023,
Published Online:22 August 2023,
Received:30 January 2023,
Revised:31 July 2023,
Accepted:06 August 2023
Scan QR Code
Zhang, L. et al. Plasmonic metafibers electro-optic modulators. Light: Science & Applications, 12, 1893-1901 (2023).
Zhang, L. et al. Plasmonic metafibers electro-optic modulators. Light: Science & Applications, 12, 1893-1901 (2023). DOI: 10.1038/s41377-023-01255-7.
Digitalizing optical signals through electric driving signals
electro-optic modulators (EOMs) are one of the cardinal elements in modern optical communications. Most of current EOM devices are targeting on-chip integrations
which routinely suffer from high coupling losses
complex optical alignments and single-band operations. In this study
we for the first time integrate a lumped EOM device on the endfaces of a single-mode optical fiber jumper for fast amplitude modulations. Profiting from ultrathin and high quality-factor plasmonic metasurfaces
nanofabrication-friendly and highly efficient EO polymers and coupling-free connections with fiber networks
our EOM is demonstrated to allow dual-band operations (telecom O band and S band) and high-speed modulations (~1 GHz at a bias voltage of ±9 V). This work offers an avenue to 'plug-and-play' implementations of EO devices and ultracompact "all-in-fibers" optical systems for communications
imaging
sensing and many others.
Haffner, C. et al. All-plasmonic mach–zehnder modulator enabling optical high-speed communication at the microscale.Nat. Photonics9, 525–528 (2015)..
Haffner, C. et al. Low-loss plasmon-assisted electro-optic modulator.Nature556, 483–486 (2018)..
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages.Nature562, 101–104 (2018)..
Liu, M. et al. A graphene-based broadband optical modulator.Nature474, 64–67 (2011)..
Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials.Nat. Photonics10, 60–65 (2016)..
Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon.Nat. Mater.18, 42–47 (2019)..
Berto, P. et al. Tunable and free-form planar optics.Nat. Photonics13, 649–656 (2019)..
Liu, J. L. et al. Recent advances in polymer electro-optic modulators.RSC Adv.5, 15784–15794 (2015)..
Lu, G. W. et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s-1for energy-efficient datacentres and harsh-environment applications.Nat. Commun.11, 4224 (2020)..
Benea-Chelmus, I. C. et al. Electro-optic spatial light modulator from an engineered organic layer.Nat. Commun.12, 5928 (2021)..
Sun, X. Y. et al. Electro-optic polymer and silicon nitride hybrid spatial light modulators based on a metasurface.Opt. Express29, 25543–25551 (2021)..
Benea-Chelmus, I. C. et al. Gigahertz free-space electro-optic modulators based on Mie resonances.Nat. Commun.13, 3170 (2022)..
Heni, W. et al. Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design.Opt. Express25, 2627–2653 (2017)..
Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum.Science379, eabj4396 (2023)..
Liu, J. L. et al. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials.Dyes Pigments181, 108509 (2020)..
Korenko, B., Jasenek, J.&Červeňová, I. J. Pockels and Kerr effect investigation in fibre Bragg gratings.J. Electr. Eng.63, 148–151 (2012)..
Yu, H. B. et al. Electro-optic polymer waveguide modulator based on the Pockels and Kerr effects.Optical Eng.52, 044601 (2013)..
Wang, Q. et al. Thin-film stack based integrated GRIN coupler with aberration-free focusing and super-high NA for efficient fiber-to-nanophotonic-chip coupling.Opt. Express18, 4574–4589 (2010)..
Romero-Garcia, S. et al. Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of Ⅲ–Ⅴ Lasers with SOI waveguides.IEEE J. Sel. Top. Quantum Electron.20, 369–379 (2014)..
Liu, W. X. et al. High efficiency silicon edge coupler based on uniform arrayed waveguides with un-patterned cladding.IEEE Photonics Technol. Lett.32, 1077–1080 (2020)..
Ayata, M. et al. High-speed plasmonic modulator in a single metal layer.Science358, 630–632 (2017)..
Marchetti, R. et al. High-efficiency grating-couplers: demonstration of a new design strategy.Sci. Rep.7, 16670 (2017)..
Messner, A. et al. Broadband metallic fiber-to-chip couplers and a low-complexity integrated plasmonic platform.Nano Lett.21, 4539–4545 (2021)..
Shah, M. K. et al. Graphene-assisted electroabsorption optical modulator using d-microfiber.IEEE J. Sel. Top. Quantum Electron.23, 89–93 (2017)..
Xu, K. et al. High-speed traveling-wave modulator based on graphene and microfiber.J. Lightwave Technol.36, 4730–4735 (2018)..
Li, W. et al. Ultrafast all-optical graphene modulator.Nano Lett.14, 955–959 (2014)..
Chen, J. H. et al. An all-optical modulator based on a stereo graphene–microfiber structure.Light Sci. Appl.4, e360 (2015)..
Gan, X. T. et al. Graphene-assisted all-fiber phase shifter and switching.Optica2, 468–471 (2015)..
Hamilton, S. A. et al. Polymer in-line fiber modulators for broadband radio-frequency optical links.J. Optical Soc. Am. B15, 740–750 (1998)..
Dong, L. P. et al. All-fiber multifunctional electrooptic prototype device with a graphene/PMMA (Poly(methyl methacrylate)) hybrid film integrated on coreless side-polished fibers.ACS Appl. Electron. Mater.2, 447–455 (2020)..
Chen, K. et al. Graphene photonic crystal fibre with strong and tunable light–matter interaction.Nat. Photonics13, 754–759 (2019)..
Cheng, X. et al. Sandwiched graphene/hBN/graphene photonic crystal fibers with high electro-optical modulation depth and speed.Nanoscale12, 14472–14478 (2020)..
Principe, M. et al. Optical fiber meta-tips.Light Sci. Appl.6, e16226 (2017)..
Hong, Y. et al. Solvent-free nanofabrication based on ice-assisted electron-beam lithography.Nano Lett.20, 8841–8846 (2020)..
Xiong, Y. F.&Xu, F. Multifunctional integration on optical fiber tips: challenges and opportunities.Adv. Photonics2, 064001 (2020)..
Chen, J. H. et al. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology.Light Sci. Appl.10, 78 (2021)..
Plidschun, M. et al. Ultrahigh numerical aperture meta-fibre for flexible optical trapping.Light Sci. Appl.10, 57 (2021)..
Zou, M. Q. et al. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements.Light Sci. Appl.10, 171 (2021)..
Ren, H. R. et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range.Nat. Commun.13, 4183 (2022)..
Zhang, L. et al. 'Plug-and-play'plasmonic metafibers for ultrafast fibre lasers.Light. Adv. Manuf.3, 45 (2022)..
Esopi, M. R.&Yu, Q. M. Plasmonic aluminum nanohole arrays as transparent conducting electrodes for organic ultraviolet photodetectors with bias-dependent photoresponse.ACS Appl. Nano Mater.2, 4942–4953 (2019)..
Piao, X. Q. et al. Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property.J. Polym. Sci. Part A Polym. Chem.49, 47–54 (2011)..
Xiong, Y. F. et al. Twisted black phosphorus-based van der Waals stacks for fiber-integrated polarimeters.Sci. Adv.8, eabo0375 (2022)..
Prodan, E. et al. A hybridization model for the plasmon response of complex nanostructures.Science302, 419–422 (2003)..
Clausen, J. S. et al. Plasmonic metasurfaces for coloration of plastic consumer products.Nano Lett.14, 4499–4504 (2014)..
Liang, Y. Z. et al. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing.ACS Sens.2, 1796–1804 (2017)..
Maradudin, A. A. et al. Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating.J. Opt.18, 024004 (2016)..
Wang, B. Q. et al. High‐Q plasmonic resonances: fundamentals and applications.Adv. Optical Mater.9, 2001520 (2021)..
Katare, K. K. et al. Beam‐switching of Fabry–Perot cavity antenna using asymmetric reflection phase response of bianisotropic metasurface.IET Microw., Antennas Propag.13, 842–848 (2019)..
Rumiantsev, A.&Doerner, R. RF probe technology: history and selected topics.IEEE Microw. Mag.14, 46–58 (2013)..
Koshelev, K.&Kivshar, Y. Dielectric resonant metaphotonics.ACS Photonics8, 102–112 (2021)..
Wu, J. W. Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties.J. Optical Soc. Am. B8, 142–152 (1991)..
Ullah, F., Deng, N. P.&Qiu, F. Recent progress in electro-optic polymer for ultra-fast communication.PhotoniX2, 13 (2021)..
Park, S. K. et al. A stable host–guest electro-optic polymer system with polyisoimide as a host.React. Funct. Polym.58, 93–101 (2004)..
Qiu, F. et al. Electro-optic polymer ring resonator modulator on a flat silicon-on-insulator.Laser Photonics Rev.11, 1700061 (2017)..
Zujewski, M., Thienpont, H.&Panajotov, K. Traveling wave electrode design of electro-optically modulated coupled-cavity surface-emitting lasers.Opt. Express20, 26184–26199 (2012)..
Pozar, D. M.Microwave Engineering. 4th edn. (New York: Wiley, 2011).
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution