1.School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
2.State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanic Chinese Academy of Sciences, Shanghai 201800, China
Ruxin Li (ruxinli@mail.shcnc.ac.cn)
Zhi-Yuan Li (phzyli@scut.edu.cn)
Published:30 September 2023,
Published Online:22 August 2023,
Received:10 April 2023,
Revised:27 July 2023,
Accepted:07 August 2023
Scan QR Code
Hong, L. H. et al. Intense ultraviolet–visible–infrared full-spectrum laser. Light: Science & Applications, 12, 1902-1910 (2023).
Hong, L. H. et al. Intense ultraviolet–visible–infrared full-spectrum laser. Light: Science & Applications, 12, 1902-1910 (2023). DOI: 10.1038/s41377-023-01256-6.
A high-brightness ultrabroadband supercontinuum white laser is desirable for various fields of modern science. Here
we present an intense ultraviolet-visible-infrared full-spectrum femtosecond laser source (with 300–5000 nm 25 dB bandwidth) with 0.54 mJ per pulse. The laser is obtained by sending a 3.9 μm
3.3 mJ mid-infrared pump pulse into a cascaded architecture of gas-filled hollow-core fiber
a bare lithium niobate crystal plate
and a specially designed chirped periodically poled lithium niobate crystal
under the synergic action of second and third order nonlinearities such as high harmonic generation and self-phase modulation. This full-spectrum femtosecond laser source can provide a revolutionary tool for optical spectroscopy and find potential applications in physics
chemistry
biology
material science
industrial processing
and environment monitoring.
Hollas, J. M. Modern Spectroscopy. 4th edn. (Chichester: John Wiley, 2004).
Wright, J. C. Multiresonant coherent multidimensional spectroscopy.Annu. Rev. Phys. Chem.62, 209–230 (2011)..
Demtröder, W. Laser Spectroscopy 2: Experimental Techniques. 5th edn. (Berlin: Springer, 2015).
Chang, C.I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification. (New York: Springer, 2003).
Tu, H.&Boppart, S. A. Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers.Opt. Express17, 17983–17988 (2009)..
Gorbach, A. V.&Skryabin, D. V. Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres.Nat. Photonics1, 653–657 (2007)..
Jiang, X. et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre.Nat. Photonics9, 133–139 (2015)..
Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre.Nat. Photonics8, 830–834 (2014)..
Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons.Nature530, 66–70 (2016)..
Mücke, O. D. et al. Toward waveform nonlinear optics using multimillijoule sub-cycle waveform synthesizers.IEEE J. Sel. Top. Quantum Electron.21, 8700712 (2015)..
Fang, S. B. et al. Generation of sub-900-μJ supercontinuum with a two-octave bandwidth based on induced phase modulation in argon-filled hollow fiber.IEEE Photonics Technol. Lett.23, 688–690 (2011)..
He, P. et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level.Opt. Lett.42, 474–477 (2017)..
Su, Y. B. et al. Efficient generation of UV-enhanced intense supercontinuum in solids: toward sub-cycle transient.Appl. Phys. Lett.118, 261102 (2021)..
Shumakova, V. et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk.Nat. Commun.7, 12877 (2016)..
Silva, F. et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal.Nat. Commun.3, 807 (2012)..
Zhu, S. N. et al. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3.Phys. Rev. Lett.78, 2752–2755 (1997)..
Zhu, S. N., Zhu, Y. Y.&Ming, N. B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice.Science278, 843–846 (1997)..
Chen, B. Q. et al. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals.Appl. Phys. Lett.105, 151106 (2014)..
Chen, B. Q. et al. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals.Light Sci. Appl.3, e189 (2014)..
Chen, B. Q. et al. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal.Phys. Rev. Lett.115, 083902 (2015)..
Chen, B. Q. et al. White laser realized via synergic second- and third-order nonlinearities.Research2021, 1539730 (2021)..
Li, M. Z., Hong, L. H.&Li, Z. Y. Intense two-octave ultraviolet-visible-infrared supercontinuum laser via high-efficiency one-octave second-harmonic generation.Research2022, 9871729 (2022)..
Hong, L. H. et al. 350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation.PhotoniX4, 11 (2023)..
Chen, B. Q. et al. Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers.J. Opt.20, 034009 (2018)..
Dubietis, A.&Couairon, A. Ultrafast Supercontinuum Generation in Transparent Solid-State Media. (Cham: Springer, 2019).
Elu, U. et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source.Nat. Photonics15, 277–280 (2021)..
Agrawal, G. P. Nonlinear Fiber Optics. 5th edn. (Amsterdam: Elsevier, 2013).
Dudley, J. M., Genty, G.&Coen, S. Supercontinuum generation in photonic crystal fiber.Rev. Mod. Phys.78, 1135–1184 (2006)..
Bache, M., Moses, J.&Wise, F. W. Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities.J. Optical Soc. Am. B24, 2752–2762 (2007)..
Hu, C. Y. et al. Theoretical solution to second-harmonic generation of ultrashort laser pulse.J. Appl. Phys.122, 243105 (2017)..
Hong, L. H. et al. Spatial–temporal evolution of ultrashort laser pulse second harmonic generation inβ-barium borate (β-BBO) crystal.J. Appl. Phys.129, 233102 (2021)..
Genty, G. et al. Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides.Opt. Express15, 5382–5387 (2007)..
Conforti, M., Baronio, F.&Angelis, C. D. Nonlinear envelope equation for broadband optical pulses in quadratic media.Phys. Rev. A81, 053841 (2010)..
Jankowski, M. et al. Temporal simultons in optical parametric oscillators.Phys. Rev. Lett.120, 053904 (2018)..
Ren, M. L.&Li, Z. Y. An effective susceptibility model for exact solution of second harmonic generation in general quasi–phase-matched structures.Europhys. Lett.94, 44003 (2011)..
Hu, C. Y.&Li, Z. Y. An effective nonlinear susceptibility model for general three-wave mixing in quasi-phase-matching structure.J. Appl. Phys.121, 123110 (2017)..
Chen, Y. et al. Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier.Opt. Commun.365, 7–13 (2016)..
Marcatili, E. A. J.&Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers.Bell Syst. Tech. J.43, 1783–1809 (1964)..
Wang, P. F. et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 μm laser based on OPCPA and hollow-core fiber compression.Opt. Lett.43, 2197–2200 (2018)..
Qian, J. Y. et al. Pulse combination and compression in hollow-core fiber for few-cycle intense mid-infrared laser generation.Photonics Res.9, 477–483 (2021)..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution