
无数据
fb.l.feringa@rug.nl
gj.chen@m.scnu.edu.cn
Received:20 October 2023,
Revised:16 January 2024,
Accepted:2024-01-18,
Published Online:01 March 2024,
Published:2024-12
Scan QR Code
Yanping Deng, Guiying Long, Yang Zhang, et al. Photo-responsive functional materials based on light-driven molecular motors[J]. Light: science & applications, 2024, 13(3): 407-420.
Yanping Deng, Guiying Long, Yang Zhang, et al. Photo-responsive functional materials based on light-driven molecular motors[J]. Light: science & applications, 2024, 13(3): 407-420. DOI: 10.1038/s41377-024-01391-8.
In the past two decades
the research and development of light-triggered molecular machines have mainly focused on developing molecular devices at the nanoscale. A key scientific issue in the field is how to amplify the controlled motion of molecules at the nanoscale along multiple length scales
such as the mesoscopic or the macroscopic scale
or in a more practical perspective
how to convert molecular motion into changes of properties of a macroscopic material. Light-driven molecular motors are able to perform repetitive unidirectional rotation upon irradiation
which offers unique opportunities for responsive macroscopic systems. With several reviews that focus on the design
synthesis and operation of the motors at the nanoscale
photo-responsive macroscopic materials based on light-driven molecular motors have not been comprehensively summarized. In the present review
we first discuss the strategy of confining absolute molecular rotation into relative rotation by grafting motors on surfaces. Secondly
examples of self-assemble motors in supramolecular polymers with high internal order are illustrated. Moreover
we will focus on building of motors in a covalently linked system such as polymeric gels and polymeric liquid crystals to generate complex responsive functions. Finally
a perspective toward future developments and opportunities is given. This review helps us getting a more and more clear picture and understanding on how complex movement can be programmed in light-responsive systems and how man-made adaptive materials can be invented
which can serve as an important guideline for further design of complex and advanced responsive materials.
Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry . 5th edn. (New York: W. H. Freeman, 2002)
K. Kinbara , T. Aida , Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies . Chem. Rev. 105 , 1377 - 1400 ( 2005 ). http://doi.org/10.1021/cr030071r http://doi.org/10.1021/cr030071r
M. Schliwa , G. Woehlke , Molecular motors . Nature 422 , 759 - 765 ( 2003 ). http://doi.org/10.1038/nature01601 http://doi.org/10.1038/nature01601
P.D. Boyer , What makes ATP synthase spin? . Nature 402 , 247 - 249 ( 1999 ). http://doi.org/10.1038/46193 http://doi.org/10.1038/46193
D. Bray , Cell Movements: From Molecules to Motility ( Garland , New York , 1992 ).
H. Hess , G.D. Bachand , Biomolecular motors . Mater. Today 8 , 22 - 29 ( 2005 ). http://doi.org/10.1016/S1369-7021(05)71286-4 http://doi.org/10.1016/S1369-7021(05)71286-4
H. Hess , V. Vogel , Molecular shuttles based on motor proteins: active transport in synthetic environments . Rev. Mol. Biotechnol. 82 , 67 - 85 ( 2001 ). http://doi.org/10.1016/S1389-0352(01)00029-0 http://doi.org/10.1016/S1389-0352(01)00029-0
V. Balzani , A. Credi , M. Venturi , Molecular Devices and Machines: A Journey into the Nano World. ( John Wiley & Sons , Hoboken , 2003 ). http://doi.org/10.1002/3527601600 http://doi.org/10.1002/3527601600
J.C.M. Kistemaker et al. , Unidirectional rotary motion in achiral molecular motors . Nat. Chem. 7 , 890 - 896 ( 2015 ). http://doi.org/10.1038/nchem.2362 http://doi.org/10.1038/nchem.2362
W.R. Browne , B.L. Feringa , Making molecular machines work . Nat. Nanotechnol. 1 , 25 - 35 ( 2006 ). http://doi.org/10.1038/nnano.2006.45 http://doi.org/10.1038/nnano.2006.45
S. Corra et al. , Photoactivated artificial molecular machines that can perform tasks . Adv. Mater. 32 , 1906064 ( 2020 ). http://doi.org/10.1002/adma.201906064 http://doi.org/10.1002/adma.201906064
E. Moulin et al. , From molecular machines to stimuli-responsive materials . Adv. Mater. 32 , 1906036 ( 2020 ). http://doi.org/10.1002/adma.201906036 http://doi.org/10.1002/adma.201906036
S. Erbas-Cakmak et al. , Artificial molecular machines . Chem. Rev. 115 , 10081 - 10206 ( 2015 ). http://doi.org/10.1021/acs.chemrev.5b00146 http://doi.org/10.1021/acs.chemrev.5b00146
C. Pezzato et al. , Mastering the non-equilibrium assembly and operation of molecular machines . Chem. Soc. Rev. 46 , 5491 - 5507 ( 2017 ). http://doi.org/10.1039/C7CS00068E http://doi.org/10.1039/C7CS00068E
J.P. Collin et al. , Templated synthesis of cyclic [4] Rotaxanes consisting of two stiff rods threaded through two Bis-macrocycles with a large and rigid central plate as spacer . J. Am. Chem. Soc. 132 , 6840 - 6850 ( 2010 ). http://doi.org/10.1021/ja101759w http://doi.org/10.1021/ja101759w
V. Balzani , A. Credi , M. Venturi , Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld ( John Wiley & Sons , Hoboken , 2008 ). http://doi.org/10.1002/9783527621682 http://doi.org/10.1002/9783527621682
B.L. Feringa , W.R. Browne , Molecular Switches ( John Wiley & Sons , Hoboken , 2011 ). http://doi.org/10.1002/9783527634408 http://doi.org/10.1002/9783527634408
D.H. Qu , H. Tian , Synthetic small-molecule walkers at work . Chem. Sci. 4 , 3031 - 3035 ( 2013 ). http://doi.org/10.1039/c3sc51160j http://doi.org/10.1039/c3sc51160j
M. Natali , S. Giordani , Molecular switches as photocontrollable “smart” receptors . Chem. Soc. Rev. 41 , 4010 ( 2012 ). http://doi.org/10.1039/c2cs35015g http://doi.org/10.1039/c2cs35015g
B.L. Feringa , In control of motion: from molecular switches to molecular motors . Acc. Chem. Res. 34 , 504 - 513 ( 2001 ). http://doi.org/10.1021/ar0001721 http://doi.org/10.1021/ar0001721
R. Eelkema et al. , Nanomotor rotates microscale objects . Nature 440 , 163 ( 2006 ). http://doi.org/10.1038/440163a http://doi.org/10.1038/440163a
R.A. Van Delden et al. , Unidirectional molecular motor on a gold surface . Nature 437 , 1337 - 1340 ( 2005 ). http://doi.org/10.1038/nature04127 http://doi.org/10.1038/nature04127
S.P. Fletcher et al. , A reversible, unidirectional molecular rotary motor driven by chemical energy . Science 310 , 80 - 82 ( 2005 ). http://doi.org/10.1126/science.1117090 http://doi.org/10.1126/science.1117090
S. Kassem et al. , Artificial molecular motors . Chem. Soc. Rev. 46 , 2592 - 2621 ( 2017 ). http://doi.org/10.1039/C7CS00245A http://doi.org/10.1039/C7CS00245A
J.B. Wang , B.L. Feringa , Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor . Science 331 , 1429 - 1432 ( 2011 ). http://doi.org/10.1126/science.1199844 http://doi.org/10.1126/science.1199844
J. Conyard et al. , Ultrafast dynamics in the power stroke of a molecular rotary motor . Nat. Chem. 4 , 547 - 551 ( 2012 ). http://doi.org/10.1038/nchem.1343 http://doi.org/10.1038/nchem.1343
M. Guentner et al. , Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor . Nat. Commun. 6 ,( 2015 ). http://doi.org/10.1038/ncomms9406 http://doi.org/10.1038/ncomms9406
M. Schildhauer et al. , A Prospective ultrafast Hemithioindigo molecular motor . ChemPhotoChem 3 , 365 - 371 ( 2019 ). http://doi.org/10.1002/cptc.201900074 http://doi.org/10.1002/cptc.201900074
Y. Wang , Q. Li , Light-driven chiral molecular switches or motors in liquid crystals . Adv. Mater. 24 , 1926 - 1945 ( 2012 ). http://doi.org/10.1002/adma.201200241 http://doi.org/10.1002/adma.201200241
N. Koumura et al. , Light-driven monodirectional molecular rotor . Nature 401 , 152 - 155 ( 1999 ). http://doi.org/10.1038/43646 http://doi.org/10.1038/43646
G.S. Kottas et al. , Artificial molecular rotors . Chem. Rev. 105 , 1281 - 1376 ( 2005 ). http://doi.org/10.1021/cr0300993 http://doi.org/10.1021/cr0300993
J. Michl , E.C.H. Sykes , Molecular rotors and motors: recent advances and future challenges . ACS Nano 3 , 1042 - 1048 ( 2009 ). http://doi.org/10.1021/nn900411n http://doi.org/10.1021/nn900411n
S.D. Karlen et al. , Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals . Proc. Natl Acad. Sci. USA 107 , 14973 - 14977 ( 2010 ). http://doi.org/10.1073/pnas.1008213107 http://doi.org/10.1073/pnas.1008213107
C.Y. Cheng et al. , Design and synthesis of nonequilibrium systems . ACS Nano 9 , 8672 - 8688 ( 2015 ). http://doi.org/10.1021/acsnano.5b03809 http://doi.org/10.1021/acsnano.5b03809
C.Y. Cheng et al. , An artificial molecular pump . Nat. Nanotechnol. 10 , 547 - 553 ( 2015 ). http://doi.org/10.1038/nnano.2015.96 http://doi.org/10.1038/nnano.2015.96
G. Ragazzon et al. , Light-powered autonomous and directional molecular motion of a dissipative self-assembling system . Nat. Nanotechnol. 10 , 70 - 75 ( 2015 ). http://doi.org/10.1038/nnano.2014.260 http://doi.org/10.1038/nnano.2014.260
E. Sevick , A light-driven molecular pump . Nat. Nanotechnol. 10 , 18 - 19 ( 2015 ). http://doi.org/10.1038/nnano.2014.291 http://doi.org/10.1038/nnano.2014.291
Y.Y. Qiu et al. , Pumps through the ages . Chem 6 , 1952 - 1977 ( 2020 ). http://doi.org/10.1016/j.chempr.2020.07.009 http://doi.org/10.1016/j.chempr.2020.07.009
J.S.W. Seale et al. , Polyrotaxanes and the pump paradigm . Chem. Soc. Rev. 51 , 8450 - 8475 ( 2022 ). http://doi.org/10.1039/D2CS00194B http://doi.org/10.1039/D2CS00194B
Y. Shirai et al. , Directional control in thermally driven single-molecule nanocars . Nano Lett. 5 , 2330 - 2334 ( 2005 ). http://doi.org/10.1021/nl051915k http://doi.org/10.1021/nl051915k
J.F. Morin , Y. Shirai , J.M. Tour , En route to a motorized nanocar . Org. Lett. 8 , 1713 - 1716 ( 2006 ). http://doi.org/10.1021/ol060445d http://doi.org/10.1021/ol060445d
G. Vives , J.M. Tour , Synthesis of single-molecule nanocars . Acc. Chem. Res. 42 , 473 - 487 ( 2009 ). http://doi.org/10.1021/ar8002317 http://doi.org/10.1021/ar8002317
J. Godoy , G. Vives , J.M. Tour , Synthesis of highly fluorescent BODIPY-based nanocars . Org. Lett. 12 , 1464 - 1467 ( 2010 ). http://doi.org/10.1021/ol100108r http://doi.org/10.1021/ol100108r
T. Kudernac et al. , Electrically driven directional motion of a four-wheeled molecule on a metal surface . Nature 479 , 208 - 211 ( 2011 ). http://doi.org/10.1038/nature10587 http://doi.org/10.1038/nature10587
P.S. Weiss , Molecules join the assembly line . Nature 413 , 585 - 586 ( 2001 ). http://doi.org/10.1038/35098175 http://doi.org/10.1038/35098175
M. Burns et al. , Assembly-line synthesis of organic molecules with tailored shapes . Nature 513 , 183 - 188 ( 2014 ). http://doi.org/10.1038/nature13711 http://doi.org/10.1038/nature13711
P.R. Ashton et al. , A photochemically driven molecular-level abacus. Chemistry . A Eur. J. 6 , 3558 - 3574 ( 2000 ). http://doi.org/10.1002/1521-3765(20001002)6:19<3558::AID-CHEM3558>3.0.CO;2-M http://doi.org/10.1002/1521-3765(20001002)6:19<3558::AID-CHEM3558>3.0.CO;2-M
D.H. Qu , B.L. Feringa , Controlling molecular rotary motion with a self-complexing lock . Angew. Chem. Int. Ed. 49 , 1107 - 1110 ( 2010 ). http://doi.org/10.1002/anie.200906064 http://doi.org/10.1002/anie.200906064
H. Li et al. , A light-stimulated molecular switch driven by radical-radical interactions in water . Angew. Chem. Int. Ed. 50 , 6782 - 6788 ( 2011 ). http://doi.org/10.1002/anie.201102510 http://doi.org/10.1002/anie.201102510
M. Baroncini et al. , Photoactive molecular-based devices, machines and materials: recent advances . Eur. J. Inorg. Chem. 2018 , 4589 - 4603 ( 2018 ). http://doi.org/10.1002/ejic.201800923 http://doi.org/10.1002/ejic.201800923
Credi, A., Silvi, S. & Venturi, M. Photochemically driven molecular devices and machines. in Supramolecular Chemistry: From Molecules to Nanomaterials (eds Gale, P. A. & Steed, J. W.) (Hoboken: John Wiley & Sons, 2012).
M. Baroncini et al. , Light-responsive (Supra)molecular architectures: recent advances . Adv. Optical Mater. 7 , 1900392 ( 2019 ). http://doi.org/10.1002/adom.201900392 http://doi.org/10.1002/adom.201900392
M. Alemani et al. , Electric field-induced isomerization of azobenzene by STM . J. Am. Chem. Soc. 128 , 14446 - 14447 ( 2006 ). http://doi.org/10.1021/ja065449s http://doi.org/10.1021/ja065449s
G. Loget , A. Kuhn , Electric field-induced chemical locomotion of conducting objects . Nat. Commun. 2 ,( 2011 ). http://doi.org/10.1038/ncomms1550 http://doi.org/10.1038/ncomms1550
R. Klajn et al. , Nanoparticles that “remember” temperature . Small 6 , 1385 - 1387 ( 2010 ). http://doi.org/10.1002/smll.200902272 http://doi.org/10.1002/smll.200902272
Y.Y. Song et al. , Temperature-responsive peristome-structured smart surface for the unidirectional controllable motion of large droplets . Microsyst. Nanoeng. 9 , 119 ( 2023 ). http://doi.org/10.1038/s41378-023-00573-5 http://doi.org/10.1038/s41378-023-00573-5
C.J. Zou et al. , Multiresponsive dielectric Metasurfaces based on dual light- and temperature-responsive copolymers . Adv. Optical Mater. 11 , 2202187 ( 2023 ). http://doi.org/10.1002/adom.202202187 http://doi.org/10.1002/adom.202202187
Akutagawa, T. et al. Molecular rotor of Cs 2 ([18 ] crown-6) 3 in the solid state coupled with the magnetism of [Ni(dmit) 2 . J. Am. Chem. Soc. 127 , 4397–4402 (2005).
C.R. Thomas et al. , Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles . J. Am. Chem. Soc. 132 , 10623 - 10625 ( 2010 ). http://doi.org/10.1021/ja1022267 http://doi.org/10.1021/ja1022267
J.W. Jones et al. , Crowned dendrimers: pH-responsive pseudorotaxane formation . J. Org. Chem. 68 , 2385 - 2389 ( 2003 ). http://doi.org/10.1021/jo0265784 http://doi.org/10.1021/jo0265784
G. Kocak , C. Tuncer , V. Bütün , pH-responsive polymers . Polym. Chem. 8 , 144 - 176 ( 2017 ). http://doi.org/10.1039/C6PY01872F http://doi.org/10.1039/C6PY01872F
X. Yu et al. , Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity . Adv. Mater. 17 , 1289 - 1293 ( 2005 ). http://doi.org/10.1002/adma.200401646 http://doi.org/10.1002/adma.200401646
T.D. Nguyen et al. , Construction of a pH-driven supramolecular nanovalve . Org. Lett. 8 , 3363 - 3366 ( 2006 ). http://doi.org/10.1021/ol0612509 http://doi.org/10.1021/ol0612509
Z.Q. Lin et al. , pH- and temperature-responsive hydrogels based on tertiary amine-modified polypeptides for stimuli-responsive drug delivery . Chem. Asian J. 18 , e202300021 ( 2023 ). http://doi.org/10.1002/asia.202300021 http://doi.org/10.1002/asia.202300021
X. Ma , H. Tian , Stimuli-responsive supramolecular polymers in aqueous solution . Acc. Chem. Res. 47 , 1971 - 1981 ( 2014 ). http://doi.org/10.1021/ar500033n http://doi.org/10.1021/ar500033n
T. Aida , E.W. Meijer , S.I. Stupp , Functional supramolecular polymers . Science 335 , 813 - 817 ( 2012 ). http://doi.org/10.1126/science.1205962 http://doi.org/10.1126/science.1205962
O.J.G.M. Goor et al. , From supramolecular polymers to multi-component biomaterials . Chem. Soc. Rev. 46 , 6621 - 6637 ( 2017 ). http://doi.org/10.1039/C7CS00564D http://doi.org/10.1039/C7CS00564D
B. Qin et al. , Supramolecular polymer chemistry: from structural control to functional assembly . Prog. Polym. Sci. 100 , 101167 ( 2020 ). http://doi.org/10.1016/j.progpolymsci.2019.101167 http://doi.org/10.1016/j.progpolymsci.2019.101167
Z.H. Wang et al. , Chasing the rainbow: exploiting photosensitizers to drive photoisomerization reactions . Responsive Mater. 1 , e20230012 ( 2023 ). http://doi.org/10.1002/rpm.20230012 http://doi.org/10.1002/rpm.20230012
R. Zheng et al. , Stimuli-responsive active materials for dynamic control of light field . Responsive Mater. 1 , e20230017 ( 2023 ). http://doi.org/10.1002/rpm.20230017 http://doi.org/10.1002/rpm.20230017
J.J. Gao et al. , Stimuli-responsive photonic actuators for integrated biomimetic and intelligent systems . Responsive Mater. 1 , e20230008 ( 2023 ). http://doi.org/10.1002/rpm.20230008 http://doi.org/10.1002/rpm.20230008
H.M.D. Bandara , S.C. Burdette , Photoisomerization in different classes of azobenzene . Chem. Soc. Rev. 41 , 1809 - 1825 ( 2012 ). http://doi.org/10.1039/C1CS15179G http://doi.org/10.1039/C1CS15179G
A.A. Beharry , G.A. Woolley , Azobenzene photoswitches for biomolecules . Chem. Soc. Rev. 40 , 4422 - 4437 ( 2011 ). http://doi.org/10.1039/c1cs15023e http://doi.org/10.1039/c1cs15023e
M. Irie , Diarylethenes for memories and switches . Chem. Rev. 100 , 1685 - 1716 ( 2000 ). http://doi.org/10.1021/cr980069d http://doi.org/10.1021/cr980069d
M. Irie et al. , Photochromism of diarylethene molecules and crystals: memories, switches, and actuators . Chem. Rev. 114 , 12174 - 12277 ( 2014 ). http://doi.org/10.1021/cr500249p http://doi.org/10.1021/cr500249p
Z.G. Zheng et al. , Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light . Nature 531 , 352 - 356 ( 2016 ). http://doi.org/10.1038/nature17141 http://doi.org/10.1038/nature17141
Z. Mahimwalla et al. , Azobenzene photomechanics: prospects and potential applications . Polym. Bull. 69 , 967 - 1006 ( 2012 ). http://doi.org/10.1007/s00289-012-0792-0 http://doi.org/10.1007/s00289-012-0792-0
K.G. Yager , C.J. Barrett , Novel photo-switching using azobenzene functional materials . J. Photochem. Photobiol. A Chem. 182 , 250 - 261 ( 2006 ). http://doi.org/10.1016/j.jphotochem.2006.04.021 http://doi.org/10.1016/j.jphotochem.2006.04.021
M. Younis et al. , Recent progress in azobenzene-based supramolecular materials and applications . Chem. Rec. 23 , e202300126 ( 2023 ). http://doi.org/10.1002/tcr.202300126 http://doi.org/10.1002/tcr.202300126
Z.Y. Li et al. , Photoswitchable diarylethenes: from molecular structures to biological applications . Coord. Chem. Rev. 497 , 215451 ( 2023 ). http://doi.org/10.1016/j.ccr.2023.215451 http://doi.org/10.1016/j.ccr.2023.215451
J.J. Zhang , H. Tian , The endeavor of diarylethenes: new structures, high performance, and bright future . Adv. Optical Mater. 6 , 1701278 ( 2018 ). http://doi.org/10.1002/adom.201701278 http://doi.org/10.1002/adom.201701278
Z.Y. Li et al. , Recent progress in all-visible-light-triggered diarylethenes . Dyes Pigments 182 , 108623 ( 2020 ). http://doi.org/10.1016/j.dyepig.2020.108623 http://doi.org/10.1016/j.dyepig.2020.108623
N. Koumura et al. , Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center . J. Am. Chem. Soc. 122 , 12005 - 12006 ( 2000 ). http://doi.org/10.1021/ja002755b http://doi.org/10.1021/ja002755b
H. Wang et al. , Visible light-driven molecular switches and motors: recent developments and applications . Chem.-A Eur. J. 28 , e202103906 ( 2022 ). http://doi.org/10.1002/chem.202103906 http://doi.org/10.1002/chem.202103906
D.R.S. Pooler et al. , Designing light-driven rotary molecular motors . Chem. Sci. 12 , 14964 - 14986 ( 2021 ). http://doi.org/10.1039/D1SC04781G http://doi.org/10.1039/D1SC04781G
Cnossen, A., Browne, W. R. & Feringa, B. L. Unidirectional light-driven molecular motors based on overcrowded alkenes. in Molecular Machines and Motors (eds Credi, A., Silvi, S. & Venturi, M.) (Cham: Springer, 2014), 139-162
J.X. Hou et al. , Photo-responsive helical motion by light-driven molecular motors in a liquid-crystal network . Angew. Chem. Int. Ed. 60 , 8251 - 8257 ( 2021 ). http://doi.org/10.1002/anie.202016254 http://doi.org/10.1002/anie.202016254
J.X. Hou et al. , Phototriggered complex motion by programmable construction of light-driven molecular motors in liquid crystal networks . J. Am. Chem. Soc. 144 , 6851 - 6860 ( 2022 ). http://doi.org/10.1021/jacs.2c01060 http://doi.org/10.1021/jacs.2c01060
B.L. Feringa , The art of building small: from molecular switches to molecular motors . J. Org. Chem. 72 , 6635 - 6652 ( 2007 ). http://doi.org/10.1021/jo070394d http://doi.org/10.1021/jo070394d
T. Van Leeuwen et al. , Dynamic control of function by light-driven molecular motors . Nat. Rev. Chem. 1 , 0096 ( 2017 ). http://doi.org/10.1038/s41570-017-0096 http://doi.org/10.1038/s41570-017-0096
R. Costil et al. , Directing coupled motion with light: a key step toward machine-like function . Chem. Rev. 121 , 13213 - 13237 ( 2021 ). http://doi.org/10.1021/acs.chemrev.1c00340 http://doi.org/10.1021/acs.chemrev.1c00340
N. Koumura et al. , Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification . J. Am. Chem. Soc. 124 , 5037 - 5051 ( 2002 ). http://doi.org/10.1021/ja012499i http://doi.org/10.1021/ja012499i
F. Xu et al. , From photoinduced supramolecular polymerization to responsive organogels . J. Am. Chem. Soc. 143 , 5990 - 5997 ( 2021 ). http://doi.org/10.1021/jacs.1c01802 http://doi.org/10.1021/jacs.1c01802
Q. Li et al. , Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors . Nat. Nanotechnol. 10 , 161 - 165 ( 2015 ). http://doi.org/10.1038/nnano.2014.315 http://doi.org/10.1038/nnano.2014.315
R.C. Lan et al. , Amplifying molecular scale rotary motion: the marriage of overcrowded alkene molecular motor with liquid crystals . Adv. Mater. 34 , 2109800 ( 2022 ). http://doi.org/10.1002/adma.202109800 http://doi.org/10.1002/adma.202109800
S. Zhang et al. , Artificial molecular machines: design and observation . Smart Molecules 1 , e20230015 ( 2023 ). http://doi.org/10.1002/smo.20230015 http://doi.org/10.1002/smo.20230015
F. Xu , B.L. Feringa , Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials . Adv. Mater. 35 , 2204413 ( 2023 ). http://doi.org/10.1002/adma.202204413 http://doi.org/10.1002/adma.202204413
J.Y. Sheng , D.R.S. Pooler , B.L. Feringa , Enlightening dynamic functions in molecular systems by intrinsically chiral light-driven molecular motors . Chem. Soc. Rev. 52 , 5875 - 5891 ( 2023 ). http://doi.org/10.1039/D3CS00247K http://doi.org/10.1039/D3CS00247K
B.L. Feringa , The art of building small: from molecular switches to motors (Nobel lecture) . Angew. Chem. Int. Ed. 56 , 11060 - 11078 ( 2017 ). http://doi.org/10.1002/anie.201702979 http://doi.org/10.1002/anie.201702979
M.M. Pollard et al. , Controlled rotary motion in a monolayer of molecular motors . Angew. Chem. Int. Ed. 46 , 1278 - 1280 ( 2007 ). http://doi.org/10.1002/anie.200603618 http://doi.org/10.1002/anie.200603618
London, G. et al. Light-driven altitudinal molecular motors on surfaces. Chem. Commun. 13 , 1712-1714 (2009)
G.T. Carroll et al. , Adhesion of photon-driven molecular motors to surfaces via 1,3-dipolar cycloadditions: effect of interfacial interactions on molecular motion . ACS Nano 5 , 622 - 630 ( 2011 ). http://doi.org/10.1021/nn102876j http://doi.org/10.1021/nn102876j
J.W. Chen , J. Vachon , B.L. Feringa , Design, synthesis, and isomerization studies of light-driven molecular motors for single molecular imaging . J. Org. Chem. 83 , 6025 - 6034 ( 2018 ). http://doi.org/10.1021/acs.joc.8b00654 http://doi.org/10.1021/acs.joc.8b00654
B. Krajnik et al. , Defocused imaging of UV-driven surface-bound molecular motors . J. Am. Chem. Soc. 139 , 7156 - 7159 ( 2017 ). http://doi.org/10.1021/jacs.7b02758 http://doi.org/10.1021/jacs.7b02758
G. London et al. , Towards dynamic control of wettability by using functionalized altitudinal molecular motors on solid surfaces . Chem. A Eur. J. 19 , 10690 - 10697 ( 2013 ). http://doi.org/10.1002/chem.201300500 http://doi.org/10.1002/chem.201300500
K.Y. Chen et al. , Control of surface wettability using tripodal light-activated molecular motors . J. Am. Chem. Soc. 136 , 3219 - 3224 ( 2014 ). http://doi.org/10.1021/ja412110t http://doi.org/10.1021/ja412110t
D.J. Van Dijken et al. , Amphiphilic molecular motors for responsive aggregation in water . J. Am. Chem. Soc. 138 , 660 - 669 ( 2016 ). http://doi.org/10.1021/jacs.5b11318 http://doi.org/10.1021/jacs.5b11318
S.Y. Chen et al. , Dynamic assemblies of molecular motor amphiphiles control macroscopic foam properties . J. Am. Chem. Soc. 142 , 10163 - 10172 ( 2020 ). http://doi.org/10.1021/jacs.0c03153 http://doi.org/10.1021/jacs.0c03153
J.W. Chen et al. , Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors . Nat. Chem. 10 , 132 - 138 ( 2018 ). http://doi.org/10.1038/nchem.2887 http://doi.org/10.1038/nchem.2887
F.K.C. Leung et al. , Supramolecular packing and macroscopic alignment controls actuation speed in macroscopic strings of molecular motor amphiphiles . J. Am. Chem. Soc. 140 , 17724 - 17733 ( 2018 ). http://doi.org/10.1021/jacs.8b10778 http://doi.org/10.1021/jacs.8b10778
F.K.C. Leung et al. , Dual-controlled macroscopic motions in a supramolecular hierarchical assembly of motor amphiphiles . Angew. Chem. Int. Ed. 58 , 10985 - 10989 ( 2019 ). http://doi.org/10.1002/anie.201905445 http://doi.org/10.1002/anie.201905445
J.T. Foy et al. , Dual-light control of nanomachines that integrate motor and modulator subunits . Nat. Nanotechnol. 12 , 540 - 545 ( 2017 ). http://doi.org/10.1038/nnano.2017.28 http://doi.org/10.1038/nnano.2017.28
H.K. Bisoyi , Q. Li , “Liquid Crystals” in Kirk-Othmer Encyclopedia of Chemical Technology ( John Wiley & Sons , Hoboken , 2014 ).
H.K. Bisoyi , Q. Li , Liquid crystals: versatile self-organized smart soft materials . Chem. Rev. 122 , 4887 - 4926 ( 2022 ). http://doi.org/10.1021/acs.chemrev.1c00761 http://doi.org/10.1021/acs.chemrev.1c00761
K.D. Harris et al. , Large amplitude light-induced motion in high elastic modulus polymer actuators . J. Mater. Chem. 15 , 5043 - 5048 ( 2005 ). http://doi.org/10.1039/b512655j http://doi.org/10.1039/b512655j
T.J. White , D.J. Broer , Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers . Nat. Mater. 14 , 1087 - 1098 ( 2015 ). http://doi.org/10.1038/nmat4433 http://doi.org/10.1038/nmat4433
L.T. De Haan et al. , Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks . Angew. Chem. Int. Ed. 51 , 12469 - 12472 ( 2012 ). http://doi.org/10.1002/anie.201205964 http://doi.org/10.1002/anie.201205964
R.C. Lan et al. , Light-driven liquid crystalline networks and soft actuators with degree-of-freedom-controlled molecular motors . Adv. Funct. Mater. 30 , 2000252 ( 2020 ). http://doi.org/10.1002/adfm.202000252 http://doi.org/10.1002/adfm.202000252
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621