1.Department of Precision Instruments, Tsinghua University, Beijing 100084, China
2.Department of Engineering, Centre for Photonic Devices and Sensors, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
3.Cambridge University Nanjing Centre of Technology and Innovation, 23 Rongyue Road, Jiangbei New Area, Nanjing 210000, China
Daping Chu (dpc31@cam.ac.uk)
Liangcai Cao (clc@tsinghua.edu.cn)
Published:31 August 2024,
Published Online:09 July 2024,
Received:04 January 2024,
Revised:27 March 2024,
Accepted:07 April 2024
Scan QR Code
Sui, X. M. et al. Non-convex optimization for inverse problem solving in computer-generated holography. Light: Science & Applications, 13, 1464-1486 (2024).
Sui, X. M. et al. Non-convex optimization for inverse problem solving in computer-generated holography. Light: Science & Applications, 13, 1464-1486 (2024). DOI: 10.1038/s41377-024-01446-w.
Computer-generated holography is a promising technique that modulates user-defined wavefronts with digital holograms. Computing appropriate holograms with faithful reconstructions is not only a problem closely related to the fundamental basis of holography but also a long-standing challenge for researchers in general fields of optics. Finding the exact solution of a desired hologram to reconstruct an accurate target object constitutes an ill-posed inverse problem. The general practice of single-diffraction computation for synthesizing holograms can only provide an approximate answer
which is subject to limitations in numerical implementation. Various non-convex optimization algorithms are thus designed to seek an optimal solution by introducing different constraints
frameworks
and initializations. Herein
we overview the optimization algorithms applied to computer-generated holography
incorporating principles of hologram synthesis based on alternative projections and gradient descent methods. This is aimed to provide an underlying basis for optimized hologram generation
as well as insights into the cutting-edge developments of this rapidly evolving field for potential applications in virtual reality
augmented reality
head-up display
data encryption
laser fabrication
and metasurface design.
Gabor, D. A new microscopic principle.Nature161, 777–778 (1948)..
Leith, E. N.&Upatnieks, J. Reconstructed wavefronts and communication theory.J. Opt. Soc. Am.52, 1123–1130 (1962)..
Denisyuk, Y. N. Photographic reconstruction of the optical properties of an object in its own scattered radiation field.Soviet Phys. Doklady7, 543 (1962)..
Goodman, J. W.&Lawrence, R. W. Digital image formation from electronically detected holograms.Appl. Phys. Lett.11, 77–79 (1967)..
Situ, G. H. Deep holography.Light Adv. Manuf.3, 13 (2022)..
Fratz, M. et al. Digital holography in production: an overview.Light Adv. Manuf.2, 15 (2021)..
Brown, B. R.&Lohmann, A. W. Complex spatial filtering with binary masks.Appl. Opt.5, 967–969 (1966)..
Blanche, P. A. Holography, and the future of 3D display.Light Adv. Manuf.2, 28 (2021)..
Blinder, D. et al. The state-of-the-art in computer generated holography for 3D display.Light Adv. Manuf.3, 35 (2022)..
Wang, D. et al. Large viewing angle holographic 3D display system based on maximum diffraction modulation.Light Adv. Manuf.4, 18 (2023)..
Sandford O'Neill, J. et al. 3D switchable diffractive optical elements fabricated with two‐photon polymerization.Adv. Opt. Mater.10, 2102446 (2022)..
Neshev, D. N.&Miroshnichenko, A. E. Enabling smart vision with metasurfaces.Nat. Photonics17, 26–35 (2023)..
Eliezer, Y. et al. Suppressing meta-holographic artifacts by laser coherence tuning.Light Sci. Appl.10, 104 (2021)..
Li, L. L. et al. Intelligent metasurfaces: control, communication and computing.eLight2, 7 (2022)..
Forbes, A., De Oliveira, M.&Dennis, M. R. Structured light.Nat. Photonics15, 253–262 (2021)..
Shen, Y. J. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities.Light Sci. Appl.8, 90 (2019)..
Dorrah, A. H. et al. Light sheets for continuous-depth holography and three-dimensional volumetric displays.Nat. Photonics17, 427–434 (2023)..
Makey, G. et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors.Nat. Photonics13, 251–256 (2019)..
Hu, Y. Q. et al. 3D-integrated metasurfaces for full-colour holography.Light Sci. Appl.8, 86 (2019)..
Fang, X. Y., Ren, H. R.&Gu, M. Orbital angular momentum holography for high-security encryption.Nat. Photonics14, 102–108 (2020)..
Li, X. et al. Independent light field manipulation in diffraction orders of metasurface holography.Laser Photonics Rev.16, 2100592 (2022)..
Kim, I. et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform.Nat. Commun.12, 3614 (2021)..
Javidi, B. et al. Roadmap on optical security.J. Opt.18, 083001 (2016)..
Hou, J. F.&Situ, G. H. Image encryption using spatial nonlinear optics.eLight2, 3 (2022)..
Li, Y. L. et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size.Light Sci. Appl.11, 188 (2022)..
An, J. et al. Slim-panel holographic video display.Nat. Commun.11, 5568 (2020)..
Smalley, D. E. et al. Anisotropic leaky-mode modulator for holographic video displays.Nature498, 313–317 (2013)..
Xue, G. P. et al. Polarized holographic lithography system for high-uniformity microscale patterning with periodic tunability.Microsyst. Nanoeng.7, 31 (2021)..
Otte, E.&Denz, C. Optical trapping gets structure: structured light for advanced optical manipulation.Appl. Phys. Rev.7, 041308 (2020)..
Adesnik, H.&Abdeladim, L. Probing neural codes with two-photon holographic optogenetics.Nat. Neurosci.24, 1356–1366 (2021)..
Carmi, I. et al. Holographic two-photon activation for synthetic optogenetics.Nat. Protoc.14, 864–900 (2019)..
Pégard, N. C. et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT).Nat. Commun.8, 1228 (2017)..
Maimone, A., Georgiou, A.&Kollin, J. S. Holographic near-eye displays for virtual and augmented reality.ACM Transac. Gr.36, 85 (2017)..
He, Z. H. et al. Progress in virtual reality and augmented reality based on holographic display.Appl. Opt.58, A74–A81 (2019)..
Chang, C. L. et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective.Optica7, 1563–1578 (2020)..
Xiong, J. H. et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives.Light Sci. Appl.10, 216 (2021)..
Park, J. H.&Lee, B. Holographic techniques for augmented reality and virtual reality near-eye displays.Light Adv. Manuf.3, 9 (2022)..
Kress, B. C.&Pace, M. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets.Light Adv. Manuf.3, 42 (2022)..
Martinez, C. et al. See-through holographic retinal projection display concept.Optica5, 1200–1209 (2018)..
Jang, C. et al. Holographic near-eye display with expanded eye-box.ACM Transac. Gr.37, 195 (2018)..
Wakunami, K. et al. Projection-type see-through holographic three-dimensional display.Nat. Commun.7, 12954 (2016)..
Sando, Y. et al. Holographic augmented reality display with conical holographic optical element for wide viewing zone.Light Adv. Manuf.3, 12 (2022)..
Skirnewskaja, J.&Wilkinson, T. D. Automotive holographic head‐up displays.Adv. Mater.34, 2110463 (2022)..
Coni, P., Damamme, N.&Bardon, J. L. The future of holographic head-up display.IEEE Consumer Electron. Mag.8, 68–73 (2019)..
Cheng, D. W. et al. Design and manufacture AR head-mounted displays: a review and outlook.Light Adv. Manuf.2, 24 (2021)..
Xiong, J. H. et al. Holo-imprinting polarization optics with a reflective liquid crystal hologram template.Light Sci. Appl.11, 54 (2022)..
Blanche, P. A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer.Nature468, 80–83 (2010)..
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics.Nature588, 39–47 (2020)..
Yu, H. et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields.Nat. Photonics11, 186–192 (2017)..
Huang, Z. Q., Marks, D. L.&Smith, D. R. Out-of-plane computer-generated multicolor waveguide holography.Optica6, 119–124 (2019)..
Park, J., Lee, K.&Park, Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve.Nat. Commun.10, 1304 (2019)..
Makowski, M. et al. Dynamic complex opto-magneticholography.Nat. Commun.13, 7286 (2022)..
Pi, D. P., Liu, J.&Wang, Y. T. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display.Light Sci. Appl.11, 231 (2022)..
He, Z. H. et al. Optimal quantization for amplitude and phase in computer-generated holography.Optics Express29, 119–133 (2021)..
Burch, J. J. A computer algorithm for the synthesis of spatial frequency filters.Proc. IEEE55, 599–601 (1967)..
Bryngdahl, O.&Lohmann, A. Single-sideband holography.J. Opt. Soc. Am.58, 620–624 (1968)..
Lohmann, A. W.&Paris, D. P. Binary fraunhofer holograms, generated by computer.Appl. Opt.6, 1739–1748 (1967)..
Lesem, L. B., Hirsch, P. M.&Jordan, J. A. The kinoform: a new wavefront reconstruction device.IBM J. Res. Dev.13, 150–155 (1969)..
Brown, B. R.&Lohmann, A. W. Computer-generated binary holograms.IBM J. Res. Dev.13, 160–168 (1969)..
Burckhardt, C. B. Use of a random phase mask for the recording of Fourier transform holograms of data masks.Appl. Opt.9, 695–700 (1970)..
Li, J., Smithwick, Q.&Chu, D. P. Holobricks: modular coarse integral holographic displays.Light Sci. Appl.11, 57 (2022)..
Fienup, J. R., Crimmins, T. R.&Holsztynski, W. Reconstruction of the support of an object from the support of its autocorrelation.J. Opt. Soc. Am.72, 610–624 (1982)..
Barakat, R.&Newsam, G. Necessary conditions for a unique solution to two‐dimensional phase recovery.J. Mathe. Phys.25, 3190–3193 (1984)..
Bräuer, R., Wyrowski, F.&Bryngdahl, O. Diffusers in digital holography.J. Opt. Soc. Am. A8, 572–578 (1991)..
Barakat, R.&Newsam, G. Algorithms for reconstruction of partially known, band-limited Fourier-transform pairs from noisy data.J. Opt. Soc. Am. A2, 2027–2039 (1985)..
Peng, Y. F. et al. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration.Sci. Adv.7, eabg5040 (2021)..
Lee, B. et al. High-contrast, speckle-free, true 3D holography via binary CGH optimization.Sci. Rep.12, 2811 (2022)..
Zhang, J. Z. et al. 3D computer-generated holography by non-convex optimization.Optica4, 1306–1313 (2017)..
Shi, L., Li, B. C.&Matusik, W. End-to-end learning of 3D phase-only holograms for holographic display.Light Sci. Appl.11, 247 (2022)..
Wyrowski, F.&Bryngdahl, O. Iterative Fourier-transform algorithm applied to computer holography.J. Opt. Soc. Am. A5, 1058–1065 (1988)..
Aagedal, H. et al. Theory of speckles in diffractive optics and its application to beam shaping.J. Modern Opt.43, 1409–1421 (1996)..
Dallas, W. J. Deterministic diffusers for holography.Appl. Opt.12, 1179–1187 (1973)..
Voelz, D. G.&Roggemann, M. C. Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences.Appl. Opt.48, 6132–6142 (2009)..
Tricoles, G. Computer generated holograms: an historical review.Appl. Opt.26, 4351–4360 (1987)..
Kelly, D. P. Numerical calculation of the Fresnel transform.J. Opt. Soc. Am. A31, 755–764 (2014)..
Muffoletto, R. P., Tyler, J. M.&Tohline, J. E. Shifted Fresnel diffraction for computational holography.Opt. Express15, 5631–5640 (2007)..
Voelz, D. G.Computational Fourier Optics: A MATLAB Tutorial. (SPIE Press: Bellingham, 2011).
Born, M.&Wolf, E.Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light4th edn, (New York: Elsevier, 2013).
Goodman, J. W.Introduction to Fourier Optics3rd edn, (Englewood: Roberts and Company Publishers, 2005).
Matsushima, K., Schimmel, H.&Wyrowski, F. Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves.J. Opt. Soc. Am. A20, 1755–1762 (2003)..
Wyrowski, F.&Bryngdahl, O. Speckle-free reconstruction in digital holography.J. Opt. Soc. Am. A6, 1171–1174 (1989)..
Hecht, E. Optics. (Pearson Education India: Noida, 2012).
Matsushima, K.&Shimobaba, T. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields.Opt. Express17, 19662–19673 (2009)..
Kuo, G. et al. High resolution étendue expansion for holographic displays.ACM Transac. Gr.39, 66 (2020)..
Yoshikawa, N.&Yatagai, T. Phase optimization of a kinoform by simulated annealing.Appl. Opt.33, 863–868 (1994)..
Boyd, S.&Dattorro, J.Alternating Projections. (Stanford University, 2003).
Elser, V. Phase retrieval by iterated projections.J. Op. Soc. Am. A20, 40–55 (2003)..
Gerchberg, B. R. W.&Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures.Optik35, 237–246 (1972)..
Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform.Opt. Lett.3, 27–29 (1978)..
Fienup, J. R. Phase retrieval algorithms: a comparison.Appl. Opt.21, 2758–2769 (1982)..
Takajo, H. et al. Study on the convergence property of the hybrid input–output algorithm used for phase retrieval.J. Opt. Soc. Am. A15, 2849–2861 (1998)..
Takajo, H., Takahashi, T.&Shizuma, T. Further study on the convergence property of the hybrid input–output algorithm used for phase retrieval.J. Opt. Soc. Am. A16, 2163–2168 (1999)..
Fienup, J. R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint.J. Opt. Soc. Am. A4, 118–123 (1987)..
Gabel, R. A.&Liu, B. Minimization of reconstruction errors with computer generated binary holograms.Appl. Opt.9, 1180–1191 (1970)..
Hirsch, P. M., Jordan, J. A.&Lesem, L. B. Jr. Method of making an object dependent diffuser.U. S. PatentNo. 3619022A (1971).
Gallagher, N. C.&Liu, B. Method for computing kinoforms that reduces image reconstruction error.Appl. Opt.12, 2328–2335 (1973)..
Fienup, J. R. Iterative method applied to image reconstruction and to computer-generated holograms.Opt. Eng.19, 193297 (1980)..
Akahori, H. Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform.Appl. Opt.25, 802–811 (1986)..
Liu, J. S., Caley, A. J.&Taghizadeh, M. R. Symmetrical iterative Fourier-transform algorithm using both phase and amplitude freedoms.Opt. Commun.267, 347–355 (2006)..
Chang, C. L. et al. Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm.Appl. Opt.54, 6994–7001 (2015)..
Pang, H. et al. High-accuracy method for holographic image projection with suppressed speckle noise.Opt. Express24, 22766–22776 (2016)..
Chen, L. Z. et al. Weighted constraint iterative algorithm for phase hologram generation.Appl. Sci.10, 3652 (2020)..
Liu, K. X., He, Z. H.&Cao, L. C. Double amplitude freedom Gerchberg–Saxton algorithm for generation of phase-only hologram with speckle suppression.App. Phys. Lett.120, 061103 (2022)..
Chen, L. Z. et al. Phase hologram optimization with bandwidth constraint strategy for speckle-free optical reconstruction.Opt. Express29, 11645–11663 (2021)..
Leseberg, D. Computer-generated three-dimensional image holograms.Appl. Opt.31, 223–229 (1992)..
Velez Zea, A., Ramirez, J. F. B.&Torroba, R. Optimized random phase only holograms.Opt. Lett.43, 731–734 (2018)..
Velez-Zea, A.&Torroba, R. Optimized random phase tiles for non-iterative hologram generation.Appl. Opt.58, 9013–9019 (2019)..
Velez-Zea, A., Barrera-Ramírez, J. F.&Torroba, R. Improved phase multiplexing using iterative and non-iterative hologram generation.Opt. Lasers Eng.151, 106921 (2022)..
Chen, L. Z. et al. Non-iterative phase hologram generation with optimized phase modulation.Opt. Express28, 11380–11392 (2020)..
Zhang, C. et al. Non-iterative phase hologram generation for color holographic display.Opt. Express30, 195–209 (2022)..
Wyrowski, F., Hauck, R.&Bryngdahl, O. Computer-generated holography: hologram repetition and phase manipulations.J. Opt. Soc. Am. A4, 694–698 (1987)..
Amako, J., Miura, H.&Sonehara, T. Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator.Appl. Opt.34, 3165–3171 (1995)..
Kuzmenko, A. V. Weighting iterative Fourier transform algorithm of the kinoform synthesis.Opt. Lett.33, 1147–1149 (2008)..
Bigué, L.&Ambs, P. Optimal multicriteria approach to the iterative Fourier transform algorithm.Appl. Opt.40, 5886–5893 (2001)..
Wang, D. et al. Holographic capture and projection system of real object based on tunable zoom lens.PhotoniX1, 6 (2020)..
Wu, L.&Zhang, Z. Y. Domain multiplexed computer-generated holography by embedded wavevector filtering algorithm.PhotoniX2, 1 (2021)..
Zhai, T. T. et al. An approach for holographic projection with higher image quality and fast convergence rate.Optik159, 211–221 (2018)..
Peng, Y. F. et al. Mix-and-match holography.ACM Transac. Gr.36, 191 (2017)..
Soifer, V. A., Kotlar, V.&Doskolovich, L. Iteractive Methods for Diffractive Optical Elements Computation. (CRC Press: London, 2014).
Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase.Light Sci. Appl.8, 92 (2019)..
Rubin, N. A. et al. Jones matrix holography with metasurfaces.Sci. Adv.7, eabg7488 (2021)..
Deng, L. G. et al. Bilayer‐metasurface design, fabrication, and functionalization for full‐space light manipulation.Adv. Opt. Mater.10, 2102179 (2022)..
Yamauchi, S., Chen, Y. W.&Nakao, Z. Optimization of computer-generated holograms by an artificial neural network. InProc. Second International Conference. Knowledge-Based Intelligent Electronic Systems. ProceedingsKES'98 (Cat. No. 98EX111). Adelaide, SA, Australia: IEEE, 220-223, 1998.
Shimobaba, T. et al. Deep-learning computational holography: a review.Front. Photonics3, 854391 (2022)..
Zhang, Y. X. et al. Progress of the computer-generated holography based on deep learning.Appl. Sci.12, 8568 (2022)..
Horisaki, R., Takagi, R.&Tanida, J. Deep-learning-generated holography.Appl. Opt.57, 3859–3863 (2018)..
Goi, H., Komuro, K.&Nomura, T. Deep-learning-based binary hologram.Appl. Opt.59, 7103–7108 (2020)..
Liu, S. C.&Chu, D. P. Deep learning for hologram generation.Opt. Express29, 27373–27395 (2021)..
Ishii, Y. et al. Optimization of phase-only holograms calculated with scaled diffraction calculation through deep neural networks.Appl. Phys. B128, 22 (2022)..
Chen, Y. X. et al. Gradient descent with random initialization: fast global convergence for nonconvex phase retrieval.Mathe. Programm.176, 5–37 (2019)..
Ma, C. et al. Implicit regularization in nonconvex statistical estimation: gradient descent converges linearly for phase retrieval and matrix completion. InProc. 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 3345-3354, 2018.
Chakravarthula, P. et al. Wirtinger holography for near-eye displays.ACM Transac. Gr.38, 213 (2019)..
Peng, Y. F. et al. Neural holography with camera-in-the-loop training.ACM Transac. Gr.39, 1185 (2020)..
Kingma, D. P.&Ba, J. Adam: a method for stochastic optimization. InProc. 3rd International Conference on Learning Representations. San Diego, CA, USA, 2015.
Yang, F. et al. Perceptually motivated loss functions for computer generated holographic displays.Sci. Rep.12, 7709 (2022)..
Wang, D. et al. Curved hologram generation method for speckle noise suppression based on the stochastic gradient descent algorithm.Opt. Express29, 42650–42662 (2021)..
Chen, C. et al. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function.Opt. Express29, 15089–15103 (2021)..
Kim, D. et al. Accommodative holography: improving accommodation response for perceptually realistic holographic displays.ACM Transac. Gr.41, 111 (2022)..
Lee, D. et al. Expanding energy envelope in holographic display via mutually coherent multi-directional illumination.Sci. Rep.12, 6649 (2022)..
Gopakumar, M. et al. Unfiltered holography: optimizing high diffraction orders without optical filtering for compact holographic displays.Opt. Lett.46, 5822–5825 (2021)..
Choi, S. et al. Optimizing image quality for holographic near-eye displays with Michelson Holography.Optica8, 143–146 (2021)..
Chen, L. Z., Zhu, R. Z.&Zhang, H. Speckle-free compact holographic near-eye display using camera-in-the-loop optimization with phase constraint.Opt. Express30, 46649–46665 (2022)..
Sui, X. et al. Polarimetric calibrated robust dual-SLM complex-amplitude computer-generated holography.Opt. Lett.48, 3625–3628 (2023)..
Chen, C. et al. Off-axis camera-in-the-loop optimization with noise reduction strategy for high-quality hologram generation.Opt. Lett.47, 790–793 (2022)..
Horisaki, R. et al. Three-dimensional deeply generated holography [Invited].Appl. Opt.60, A323–A328 (2021)..
Liu, C. et al. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network.Photonics Res.9, B159–B167 (2021)..
Khan, A. et al. GAN-Holo: generative adversarial networks-based generated holography using deep learning.Complexity2021, 6662161 (2021)..
Wu, J. C. et al. High-speed computer-generated holography using an autoencoder-based deep neural network.Opt. Lett.46, 2908–2911 (2021)..
Hossein Eybposh, M. et al. DeepCGH: 3D computer-generated holography using deep learning.Opt. Express28, 26636–26650 (2020)..
Shui, X. H. et al. Diffraction model-informed neural network for unsupervised layer-based computer-generated holography.Opt. Express30, 44814–44826 (2022)..
Chakravarthula, P. et al. Learned hardware-in-the-loop phase retrieval for holographic near-eye displays.ACM Transac. Gr.39, 186 (2020)..
Choi, S. et al. Neural 3D holography: learning accurate wave propagation models for 3D holographic virtual and augmented reality displays.ACM Transac. Gr.40, 240 (2021)..
Choi, S. et al. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. InProc. ACM SIGGRAPH 2022 Conference Proceedings. Vancouver, BC, Canada: ACM, 32, 2022.
Xia, X. X. et al. Investigating learning-empowered hologram generation for holographic displays with ill-tuned hardware.Opt. Lett.48, 1478–1481 (2023)..
Boyd, S. et al. Distributed optimization and statistical learning via the alternating direction method of multipliers.Foundations Trends® Machine Learn.3, 1–122 (2011)..
Deng, W., Yin, W. T.&Zhang, Y. Group sparse optimization by alternating direction method. InProc. SPIE 8858, Wavelets and Sparsity XV.San Diego, California, United States: SPIE, 242-256, 2013.
Huang, Z. Z. et al. Aberration-free synthetic aperture phase microscopy based on alternating direction method.Opt. Lasers Eng.160, 107301 (2023)..
Dennis, J. E. Jr.&Schnabel, R. B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. (SIAM: Philadelphia, 1996).
Nocedal, J. Theory of algorithms for unconstrained optimization.Acta Numerica1, 199–242 (1992)..
Liu, D. C.&Nocedal, J. On the limited memory BFGS method for large scale optimization.Mathe. Programm.45, 503–528 (1989)..
Nocedal, J. Updating quasi-Newton matrices with limited storage.Mathe. Comput.35, 773–782 (1980)..
Sui, X. et al. Spectral-envelope modulated double-phase method for computer-generated holography.Opt. Express30, 30552–30563 (2022)..
Tsang, P. W. M., Poon, T. C.&Wu, Y. M. Review of fast methods for point-based computer-generated holography.Photonics Res.6, 837–846 (2018)..
Matsushima, K.&Nakahara, S. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method.Appl. Opt.48, H54–H63 (2009)..
Bayraktar, M.&Özcan, M. Method to calculate the far field of three-dimensional objects for computer-generated holography.Appl. Opt.49, 4647–4654 (2010)..
Zhao, Y. et al. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.Opt. Express23, 25440–25449 (2015)..
Jia, J., Si, J.&Chu, D. P. Fast two-step layer-based method for computer generated hologram using sub-sparse 2D fast Fourier transform.Opt. Express26, 17487–17497 (2018)..
McCutchen, C. W. Generalized aperture and the three-dimensional diffraction image.J. Opt. Soc. Am.54, 240–244 (1964)..
Piestun, R., Spektor, B.&Shamir, J. Unconventional light distributions in three-dimensional domains.J. Modern Opt.43, 1495–1507 (1996)..
Liu, J. P., Wu, M. H.&Tsang, P. W. M. 3D display by binary computer-generated holograms with localized random down-sampling and adaptive intensity accumulation.Opt. Express28, 24526–24537 (2020)..
Sun, P. et al. Computer-generated holographic near-eye display system based on LCoS phase only modulator. InProc. SPIE 10396, Applications of Digital Image Processing XL. San Diego, California, United States: SPIE, 294-300, 2017.
Sun, P. et al. Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm.Opt. Express26, 10140–10151 (2018)..
Pang, Y. F. et al. Simple encoding method of phase-only hologram for low crosstalk full-color multi-plane holographic projection.Opt. Lasers Eng.147, 106748 (2021)..
Chang, C. L., Xia, J.&Jiang, Y. Q. Holographic image projection on tilted planes by phase-only computer generated hologram using fractional Fourier transformation.J. Display Technol.10, 107–113 (2014)..
Hu, Y. L. et al. An improved method for computer generation of three-dimensional digital holography.J. Opt.15, 125704 (2013)..
Piestun, R.&Shamir, J. Synthesis of three-dimensional light fields and applications.Proc. IEEE90, 222–244 (2002)..
Piestun, R., Spektor, B.&Shamir, J. Wave fields in three dimensions: analysis and synthesis.J. Opt. Soc. Am. A13, 1837–1848 (1996)..
Stepien, P. J., Gajda, R.&Szoplik, T. Distributed kinoforms in optical security applications.Opt. Eng.35, 2453–2458 (1996)..
Kotlyar, V. V., Khonina, S. N.&Soifer, V. A. Iterative calculation of diffractive optical elements focusing into a three-dimensional domain and onto the surface of the body of rotation.J. Modern Opt.43, 1509–1524 (1996)..
Levy, U. et al. Iterative algorithm for determining optimal beam profiles in a three-dimensional space.Appl. Opt.38, 6732–6736 (1999)..
Shamir, J., Piestun, R.&Spektor, B. 3D light structuring and some applications. InProc. SPIE 3729, Selected Papers from International Conference on Optics and Optoelectronics' 98 (SPIE). Dehradun, India: SPIE, 222-228, 1999.
Zhou, P. C. et al. Dynamic compensatory Gerchberg-Saxton algorithm for multiple-plane reconstruction in holographic displays.Opt. Express27, 8958–8967 (2019)..
Haist, T., Schönleber, M.&Tiziani, H. J. Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays.Opt. Commun.140, 299–308 (1997)..
Velez-Zea, A.&Torroba, R. Mixed constraint in global and sequential hologram generation.Appl. Opt.60, 1888–1895 (2021)..
Velez-Zea, A. et al. Alternative constraints for improved multiplane hologram generation.Appl. Opt.61, B8–B16 (2022)..
Velez-Zea, A., Barrera-Ramírez, J. F.&Torroba, R. Improved phase hologram generation of multiple 3D objects.App. Opt.61, 3230–3239 (2022)..
Velez-Zea, A.&Torroba, R. Noniterative multiplane holographic projection.Appl. Opt.59, 4377–4384 (2020)..
Curtis, V. R. et al. DCGH: dynamic computer generated holography for speckle-free, high fidelity 3D displays. InProceedings of the 2021 IEEE Virtual Reality and 3D User Interfaces (VR). Lisboa, Portugal: IEEE, 1-9, 2021.
Shabtay, G. et al. Optimal synthesis of three-dimensional complex amplitude distributions.Opt. Lett.25, 363–365 (2000)..
Dorsch, R. G., Lohmann, A. W.&Sinzinger, S. Fresnel ping-pong algorithm for two-plane computer-generated hologram display.Appl. Opt.33, 869–875 (1994)..
Makowski, M. et al. Three-plane phase-only computer hologram generated with iterative Fresnel algorithm.Opt. Eng.44, 125805 (2005)..
Makowski, M. et al. Iterative design of multiplane holograms: experiments and applications.Opt. Eng.46, 045802 (2007)..
Zhou, P. C. et al. Image quality enhancement and computation acceleration of 3D holographic display using a symmetrical 3D GS algorithm.App. Opt.53, G209–G213 (2014)..
Shi, L., Ryu, D. H.&Matusik, W. Ergonomic-centric holography: optimizing realism, immersion, and comfort for holographic display.Laser Photonics Rev18, 2300651 (2024)..
Shi, L. et al. Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics.ACM Transac. Gr.36, 236 (2017)..
Li, J., Smithwick, Q.&Chu, D. P. Full bandwidth dynamic coarse integral holographic displays with large field of view using a large resonant scanner and a galvanometer scanner.Opt. Express26, 17459–17476 (2018)..
Chen, J. S., Smithwick, Q. Y. J.&Chu, D. P. Coarse integral holography approach for real 3D color video displays.Opt. Express24, 6705–6718 (2016)..
Park, J. H.&Askari, M. Non-hogel-based computer generated hologram from light field using complex field recovery technique from Wigner distribution function.Opt. Express27, 2562–2574 (2019)..
Lu, T. X. et al. Pixel-level fringing-effect model to describe the phase profile and diffraction efficiency of a liquid crystal on silicon device.Appl. Opt.54, 5903–5910 (2015)..
Yang, H. N.&Chu, D. P. Phase flicker in liquid crystal on silicon devices.J. Phys. Photonics2, 032001 (2020)..
Oliver, B. M. Sparkling spots and random diffraction.Proc. IEEE51, 220–221 (1963)..
Jones, R.&Wykes, C.Holographic and Speckle Interferometry. 2nd edn. (Cambridge: Cambridge University Press, 1989).
Goodman, J. W.Speckle Phenomena in Optics: Theory and Applications. (Englewood: Roberts and Company Publishers, 2007).
Nye, J. F.Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. (Bristol: Institute of Physics Publishing, 1999).
Senthilkumaran, P., Wyrowski, F.&Schimmel, H. Vortex stagnation problem in iterative Fourier transform algorithms.Opt. Lasers Eng.43, 43–56 (2005)..
Lee, W. H. Sampled Fourier transform hologram generated by computer.Appl. Opt.9, 639–643 (1970)..
Maimone, A.&Wang, J. R. Holographic optics for thin and lightweight virtual reality.ACM Transac. Gr.39, 67 (2020)..
Shi, L. et al. Towards real-time photorealistic 3D holography with deep neural networks.Nature591, 234–239 (2021)..
Wu, Y. et al. Adaptive weighted Gerchberg-Saxton algorithm for generation of phase-only hologram with artifacts suppression.Opt. Express29, 1412–1427 (2021)..
Tian, S. Z., Chen, L. Z.&Zhang, H. Optimized Fresnel phase hologram for ringing artifacts removal in lensless holographic projection.Appl. Opt.61, B17–B24 (2022)..
Pang, H. et al. Speckle-reduced holographic beam shaping with modified Gerchberg–Saxton algorithm.Opt. Commun.433, 44–51 (2019)..
Yoo, D. et al. Optimization of computer-generated holograms featuring phase randomness control.Opt. Lett.46, 4769–4772 (2021)..
Yang, D. et al. Diffraction-engineered holography: beyond the depth representation limit of holographic displays.Nat. Commun.13, 6012 (2022)..
He, Z. H. et al. Frequency-based optimized random phase for computer-generated holographic display.Appl. Opt.60, A145–A154 (2021)..
Ren, H. R. et al. Three-dimensional vectorial holography based on machine learning inverse design.Sci. Adv.6, eaaz4261 (2020)..
Wyrowski, F.&Bryngdahl, O. Digital holography as part of diffractive optics.Rep. Progress Phys.54, 1481–1571 (1991)..
Song, Q. H. et al. Vectorial metasurface holography.Appl. Phys. Rev.9, 011311 (2022)..
Zhao, R. Z., Huang, L. L.&Wang, Y. T. Recent advances in multi-dimensional metasurfaces holographictechnologies.PhotoniX1, 20 (2020)..
Jiang, Q., Jin, G. F.&Cao, L. C. When metasurface meets hologram: principle and advances.Adv. Opt. Photonics11, 518–576 (2019)..
Gao, H. et al. Recent advances in optical dynamic meta-holography.Opto-Electronic Adv.4, 210030 (2021)..
https://github.com/THUHoloLab/Optimization_algorithms_for_CGHhttps://github.com/THUHoloLab/Optimization_algorithms_for_CGH.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution