Department of Precision Instrument, Tsinghua University, Beijing 100084, China
Liangcai Cao (clc@tsinghua.edu.cn)
Published:31 July 2024,
Published Online:27 June 2024,
Received:17 September 2023,
Revised:07 April 2024,
Accepted:10 April 2024
Scan QR Code
Huang, Z. Z. & Cao, L. C. Quantitative phase imaging based on holography: trends and new perspectives. Light: Science & Applications, 13, 1235-1277 (2024).
Huang, Z. Z. & Cao, L. C. Quantitative phase imaging based on holography: trends and new perspectives. Light: Science & Applications, 13, 1235-1277 (2024). DOI: 10.1038/s41377-024-01453-x.
In 1948
Dennis Gabor proposed the concept of holography
providing a pioneering solution to a quantitative description of the optical wavefront. After 75 years of development
holographic imaging has become a powerful tool for optical wavefront measurement and quantitative phase imaging. The emergence of this technology has given fresh energy to physics
biology
and materials science. Digital holography (DH) possesses the quantitative advantages of wide-field
non-contact
precise
and dynamic measurement capability for complex-waves. DH has unique capabilities for the propagation of optical fields by measuring light scattering with phase information. It offers quantitative visualization of the refractive index and thickness distribution of weak absorption samples
which plays a vital role in the pathophysiology of various diseases and the characterization of various materials. It provides a possibility to bridge the gap between the imaging and scattering disciplines. The propagation of wavefront is described by the complex amplitude. The complex-value in the complex-domain is reconstructed from the intensity-value measurement by camera in the real-domain. Here
we regard the process of holographic recording and reconstruction as a transformation between complex-domain and real-domain
and discuss the mathematics and physical principles of reconstruction. We review the DH in underlying principles
technical approaches
and the breadth of applications. We conclude with emerging challenges and opportunities based on combining holographic imaging with other methodologies that expand the scope and utility of holographic imaging even further. The multidisciplinary nature brings technology and application experts together in label-free cell biology
analytical chemistry
clinical sciences
wavefront sensing
and semiconductor production.
Gabor, D. A new microscopic principle.Nature161, 777–778 (1948)..
Goodman, J. W.Introduction to Fourier Optics. 3rd edn. (Roberts&Company Publishers, Englewood, 2005).
Wang, Z. Y. et al. Vectorial liquid-crystal holography.eLight4, 5 (2024)..
Diaspro, A.Optical Fluorescence Microscopy: From the Spectral to the Nano Dimension, (Springer: Berlin, 2011). .
Kumar, V. et al.Robbins and Cotran Pathologic Basis of Disease. (Elsevier, Philadelphia, 2015).
Zernike, F. How I discovered phase contrast.Science121, 345–349 (1955)..
Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects.Physica9, 686–698 (1942)..
Leith, E. N.&Upatnieks, J. Reconstructed wavefronts and communication theory.J. Opt. Soc. Am.52, 1123–1130 (1962)..
Goodman, J. W. et al. Wavefront-reconstruction imaging through random media.Appl. Phys. Lett.8, 311–313 (1966)..
Goodman, J. W.&Lawrence, R. W. Digital image formation from electronically detected holograms.Appl. Phys. Lett.11, 77–79 (1967)..
Schnars, U.&Jüptner, W. Direct recording of holograms by a ccd target and numerical reconstruction.Appl. Opt.33, 179–181 (1994)..
Cuche, E., Bevilacqua, F.&Depeursinge, C. Digital holography for quantitative phase-contrast imaging.Opt. Lett.24, 291–293 (1999)..
Poon, T. CDigital Holography and Three-dimensional Display: Principles and Applications. (Springer: New York, 2006).
Boas, D. A., Pitris, C.&Ramanujam, N.Handbook of Biomedical Optics. (CRC Press, Boca Raton, 2016).
Georges, M., Zhao, Y. C.&Vandenrijt, J. Holography in the invisible. From the thermal infrared to the terahertz waves: outstanding applications and fundamental limits.Light. Adv. Manuf.2, 335–348 (2022)..
Heimbeck, M. S.&Everitt, H. O. Terahertz digital holographic imaging.Adv. Opt. Photonics12, 1–59 (2020)..
Trolinger, J. D. The language of holography.Light. Adv. Manuf.2, 473–481 (2021)..
Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data.Opt. Commun.1, 153–156 (1969)..
Dändliker, R.&Weiss, K. Reconstruction of the three-dimensional refractive index from scattered waves.Opt. Commun.1, 323–328 (1970)..
Nguyen, T. L. et al. Quantitative phase imaging: recent advances and expanding potential in biomedicine.ACS Nano16, 11516–11544 (2022)..
Cheng, J. X.&Xie, X. S.Coherent Raman scattering microscopy. (CRC Press, Boca Raton, 2016).
Chen, X., Kandel, M. E.&Popescu, G. Spatial light interference microscopy: principle and applications to biomedicine.Adv. Opt. Photonics13, 353–425 (2021)..
Hu, C. F.&Popescu, G. Physical significance of backscattering phase measurements.Opt. Lett.42, 4643–4646 (2017)..
Balasubramani, V. et al. Roadmap on digital holography-based quantitative phase imaging.J. Imaging7, 252 (2021)..
Cohen, I. B.&Weart, S. R. Selected papers of great american physicists: the bicentennial commemorative volume of the american physical society 1976.Am. J. Phys.45, 883–884 (1977)..
Lahiri, A.Basic Optics: Principles and Concepts. (Elsevier, Amsterdam, 2016).
Françon, M. Polarization interference microscopes.Appl. Opt.3, 1033–1036 (1964)..
Schelkens, P. et al. Compression strategies for digital holograms in biomedical and multimedia applications.Light.: Adv. Manuf.2, 473–481 (2021)..
Barer, R.&Tkaczyk, S. Refractive index of concentrated protein solutions.Nature173, 821–822 (1954)..
Barer, R. Interference microscopy and mass determination.Nature169, 366–367 (1952)..
Davies, H. G.&Wilkins, M. H. F. Interference microscopy and mass determination.Nature169, 541 (1952)..
de Groot, P. J. Vibration in phase-shifting interferometry.J. Opt. Soc. Am. A12, 354–365 (1995)..
Ri, S. et al. Accurate phase analysis of interferometric fringes by the spatiotemporal phase-shifting method.J. Opt.22, 105703 (2020)..
Ash, E. A. Dennis gabor, 1900–1979.Nature280, 431–433 (1979)..
Leith, E. N.&Upatnieks, J. Wavefront Reconstruction with Diffused Illumination and 3-Dimensional Objects.J. Opt. Soc. Am.54, 1295–1301 (1964)..
Leith, E. N.&Upatnieks, J. Wavefront reconstruction with continuous-tone objects.J. Opt. Soc. Am.53, 1377–1381 (1963)..
Knox, C. Holographic microscopy as a technique for recording dynamic microscopic subjects.Science153, 989–990 (1966)..
Zuo, C. et al. Transport of intensity equation: a tutorial.Opt. Lasers Eng.135, 106187 (2020)..
Latychevskaia, T. Iterative phase retrieval for digital holography: tutorial.J. Opt. Soc. Am. A36, D31–D40 (2019)..
Gerchberg, R. W. A practical algorithm for the determination of phase from image and diffraction plane pictures.Optik35, 237–246 (1972)..
Fienup, J. R. Reconstruction of an object from the modulus of its fourier transform.Opt. Lett.3, 27–29 (1978)..
Fienup, J. R. Iterative method applied to image reconstruction and to computer-generated holograms.Opt. Eng.19, 193297 (1980)..
Baek, Y. S. et al. Kramers–Kronig holographic imaging for high-space-bandwidth product.Optica6, 45–51 (2019)..
Shen, C. et al. Non-iterative complex wave-field reconstruction based on Kramers–Kronig relations.Photonics Res.9, 1003–1012 (2021)..
Baek, Y. S.&Park, Y. K. Intensity-based holographic imaging via space-domain Kramers–Kronig relations.Nat. Photonics15, 354–360 (2021)..
Hussain, A. et al. Super resolution imaging achieved by using on-axis interferometry based on a spatial light modulator.Opt. Express21, 9615–9623 (2013)..
Carré, P. Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures.Metrologia2, 13–23 (1966)..
Bruning, J. H. et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses.Appl. Opt.13, 2693–2703 (1974)..
Yamaguchi, I.&Zhang, T. Phase-shifting digital holography.Opt. Lett.22, 1268–1270 (1997)..
Cruz, M. L., Castro, A.&Arrizón, V. Phase shifting digital holography implemented with a twisted-nematic liquid-crystal display.Appl. Opt.48, 6907–6912 (2009)..
Cai, L. Z., Liu, Q.&Yang, X. L. Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects.Opt. Lett.29, 183–185 (2004)..
Gao, P. et al. Phase-shift extraction for generalized phase-shifting interferometry.Opt. Lett.34, 3553–3555 (2009)..
Li, E. B. et al. Optical phase shifting with acousto-optic devices.Opt. Lett.30, 189–191 (2005)..
Vannoni, M., Sordini, A.&Molesini, G. He – Ne laser wavelength-shifting interferometry.Opt. Commun.283, 5169–5172 (2010)..
Schreiber, H.&Bruning, J. H. Phase shifting interferometry. inOptical Measurement of Surface Topography3rd edn (ed Malacara, D.) (Hoboken: John Wiley&Sons, Ltd, 2007)
Creath, K. Step height measurement using two-wavelength phase-shifting interferometry.Appl. Opt.26, 2810–2816 (1987)..
Sirico, D. G. et al. Compensation of aberrations in holographic microscopes: main strategies and applications.Appl. Phys. B128, 78 (2022)..
Popescu, G.Quantitative Phase Imaging of Cells and Tissues. (McGraw-Hill, New York, 2011).
Creath, K. V Phase-measurement interferometry techniques.Prog. Opt.26, 349–393 (1988)..
Smythe, R.&Moore, R. Instantaneous phase measuring interferometry.Opt. Eng.23, 234361 (1984)..
Koliopoulos, C. L. Simultaneous phase-shift interferometer. Proceedings of the SPIE 1531, Advanced Optical Manufacturing and Testing Ⅱ. San Diego: SPIE, 1992, 119-127.https://doi.org/10.1117/12.134852https://doi.org/10.1117/12.134852.
Sivakumar, N. R. et al. Large surface profile measurement with instantaneous phase-shifting interferometry.Opt. Eng.42, 367–372 (2003)..
Awatsuji, Y. et al. Parallel two-step phase-shifting digital holography.Appl. Opt.47, D183–D189 (2008)..
Novak, M. et al. Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer.Appl. Opt.44, 6861–6868 (2005)..
Kakue, T. et al. Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography.Opt. Express18, 9555–9560 (2010)..
Liang, D. et al. Single-shot Fresnel incoherent digital holography based on geometric phase lens.J. Mod. Opt.67, 92–98 (2020)..
Awatsuji, Y., Sasada, M.&Kubota, T. Parallel quasi-phase-shifting digital holography.Appl. Phys. Lett.85, 1069–1071 (2004)..
Awatsuji, Y. et al. Parallel three-step phase-shifting digital holography.Appl. Opt.45, 2995–3002 (2006)..
Tahara, T. et al. Parallel two-step phase-shifting digital holography using polarization.Opt. Rev.17, 108–113 (2010)..
Gao, P. et al. Parallel two-step phase-shifting microscopic interferometry based on a cube beamsplitter.Opt. Commun.284, 4136–4140 (2011)..
Gao, P. et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters.Opt. Express19, 1930–1935 (2011)..
Bai, H. Y. et al. Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter.Appl. Opt.54, 9513–9517 (2015)..
Rodriguez-Zurita, G. et al. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms.Opt. Express16, 7806–7817 (2008)..
Meneses-Fabian, C. et al. Phase-shifting interferometry with four interferograms using linear polarization modulation and a Ronchi grating displaced by only a small unknown amount.Opt. Commun.282, 3063–3068 (2009)..
Rodriguez-Zurita, G. et al. One-shot phase-shifting interferometry: five, seven, and nine interferograms.Opt. Lett.33, 2788–2790 (2008)..
Gao, P. et al. Parallel two-step phase-shifting digital holograph microscopy based on a grating pair.J. Opt. Soc. Am. A28, 434–440 (2011)..
Yang, T. D. et al. Single-shot and phase-shifting digital holographic microscopy using a 2-D grating.Opt. Express24, 9480–9488 (2016)..
Shaked, N. T., Rinehart, M. T.&Wax, A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics.Opt. Lett.34, 767–769 (2009)..
Min, J. W. et al. Parallel phase-shifting interferometry based on Michelson-like architecture.Appl. Opt.49, 6612–6616 (2010)..
Wang, Z. et al. Spatial light interference microscopy (SLIM).Opt. Express19, 1016–1026 (2011)..
Kim, T. et al. White-light diffraction tomography of unlabelled live cells.Nat. Photonics8, 256–263 (2014)..
Nguyen, T. H. et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens.Nat. Commun.8, 210 (2017)..
Chen, X. et al. Wolf phase tomography (WPT) of transparent structures using partially coherent illumination.Light Sci. Appl.9, 142 (2020)..
Bardell, D. The Biologists' Forum: the invention of the microscope.BIOS75, 78–84 (2004)..
McLeod, E.&Ozcan, A. Unconventional methods of imaging: computational microscopy and compact implementations.Rep. Prog. Phys.79, 076001 (2016)..
Ozcan, A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools.Lab a Chip14, 3187–3194 (2014)..
Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy.Nat. Methods9, 889–895 (2012)..
Mudanyali, O. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications.Lab a Chip10, 1417–1428 (2010)..
Seo, S. et al. High-throughput lens-free blood analysis on a chip.Anal. Chem.82, 4621–4627 (2010)..
Seo, S. et al. Lensfree holographic imaging for on-chip cytometry and diagnostics.Lab a Chip9, 777–787 (2009)..
Luo, W. et al. Synthetic aperture-based on-chip microscopy.Light Sci. Appl.4, e261 (2015)..
Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy.Sci. Transl. Med.6, 267ra175 (2014)..
Tseng, D. et al. Lensfree microscopy on a cellphone.Lab a Chip10, 1787–1792 (2010)..
Greenbaum, A. et al. Field-portable pixel super-resolution colour microscope.PLoS One8, e76475 (2013)..
Isikman, S. O. et al. Lens-free optical tomographic microscope with a large imaging volume on a chip.Proc. Natl Acad. Sci. USA108, 7296–7301 (2011)..
Fienup, J. R. Phase retrieval algorithms: a comparison.Appl. Opt.21, 2758–2769 (1982)..
Yang, G. Z. et al. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a Nonunitary transform system: a comparison.Appl. Opt.33, 209–218 (1994)..
Soifer, V., Kotlyar, V.&Doskolovich, L.Iterative Methods for Diffractive Optical Elements Computation. (Taylor&Francis Inc, London, 1997).
Fienup, J. R. Phase retrieval algorithms: a personal tour [Invited].Appl. Opt.52, 45–56 (2013)..
Liu, Z. J. et al. Generation of hollow Gaussian beam by phase-only filtering.Opt. Express16, 19926–19933 (2008)..
Greenbaum, A.&Ozcan, A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy.Opt. Express20, 3129–3143 (2012)..
Huang, Z. Z. et al. Multiplane digital holography based on extrapolation iterations.Opt. Commun.481, 126526 (2021)..
Bao, P. et al. Phase retrieval using multiple illumination wavelengths.Opt. Lett.33, 309–311 (2008)..
Gao, Y. H.&Cao, L. C. Projected refractive index framework for multi-wavelength phase retrieval.Opt. Lett.47, 5965–5968 (2022)..
Gao, Y. H.&Cao, L. C. High-fidelity pixel-super-resolved complex field reconstruction via adaptive smoothing.Opt. Lett.45, 6807–6810 (2020)..
Elser, V. Phase retrieval by iterated projections.J. Opt. Soc. Am. A20, 40–55 (2003)..
Allen, L. J.&Oxley, M. P. Phase retrieval from series of images obtained by defocus variation.Opt. Commun.199, 65–75 (2001)..
Zhang, Y. B. et al. Wide-field pathology imaging using on-chip microscopy.Virchows Arch.467, 3–7 (2015)..
Fienup, J. R.&Wackerman, C. C. Phase-retrieval stagnation problems and solutions.J. Opt. Soc. Am. A3, 1897–1907 (1986)..
Zuo, C. et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix.Opt. Express23, 14314–14328 (2015)..
Rong, L. et al. Transport of intensity equation-based terahertz lensless full-field phase imaging.Opt. Lett.46, 5846–5849 (2021)..
Waller, L., Tian, L.&Barbastathis, G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives.Opt. Express18, 12552–12561 (2010)..
Zuo, C. et al. Transport-of-intensity phase imaging using savitzky-golay differentiation filter-theory and applications.Opt. Express21, 5346–5362 (2013)..
Schmalz, J. A. et al. Phase retrieval using radiation and matter-wave fields: Validity of teague's method for solution of the transport-of-intensity equation.Phys. Rev. A84, 023808 (2011)..
Zuo, C. et al. Phase discrepancy analysis and compensation for fast fourier transform based solution of the transport of intensity equation.Opt. Express22, 17172–17186 (2014)..
Weidling, J. et al. Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates.J. Biomed. Opt.17, 126018 (2012)..
Luo, W. et al. Propagation phasor approach for holographic image reconstruction.Sci. Rep.6, 22738 (2016)..
Zheng, G. A., Horstmeyer, R.&Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy.Nat. Photonics7, 739–745 (2013)..
Marrison, J. et al. Ptychography - a label free, high-contrast imaging technique for live cells using quantitative phase information.Sci. Rep.3, 2369 (2013)..
Tian, L.&Waller, L. 3D intensity and phase imaging from light field measurements in an LED array microscope.Optica2, 104–111 (2015)..
Godden, T. M. et al. Phase calibration target for quantitative phase imaging with ptychography.Opt. Express24, 7679–7692 (2016)..
Hegerl, R.&Hoppe, W. Dynamische theorie der kristallstrukturanalyse durch elektronenbeugung im inhomogenen primärstrahlwellenfeld.Ber. der Bunsenges. f.ür. Physikalische Chem.74, 1148–1154 (1970)..
Konda, P. C. et al. Fourier ptychography: current applications and future promises.Opt. Express28, 9603–9630 (2020)..
Zheng, G. A. et al. Concept, implementations and applications of fourier ptychography.Nat. Rev. Phys.3, 207–223 (2021)..
Guo, C. F. et al. Quantitative multi-height phase retrieval via a coded image sensor.Biomed. Opt. Express12, 7173–7184 (2021)..
Lu, C. C. et al. Mask-modulated lensless imaging via translated structured illumination.Opt. Express29, 12491–12501 (2021)..
Jiang, S. W. et al. Blood-coated sensor for high-throughput ptychographic cytometry on a blu-ray disc.ACS Sens.7, 1058–1067 (2022)..
Jiang, S. W. et al. Resolution-enhanced parallel coded ptychography for high-throughput optical imaging.ACS Photonics8, 3261–3271 (2021)..
Zuo, C. et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography.Opt. Lasers Eng.128, 106003 (2020)..
Tian, L. et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy.Optica2, 904–911 (2015)..
Wu, J. C., Yang, F.&Cao, L. C. Resolution enhancement of long-range imaging with sparse apertures.Opt. Lasers Eng.155, 107068 (2022)..
Greenbaum, A. et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy.Sci. Rep.3, 1717 (2013)..
Rong, L. et al. High-resolution terahertz ptychography using divergent illumination and extrapolation algorithm.Opt. Lasers Eng.147, 106729 (2021)..
Waller, L. et al. Phase from chromatic aberrations.Opt. Express18, 22817–22825 (2010)..
Noom, D. W. E., Eikema, K. S. E.&Witte, S. Lensless phase contrast microscopy based on multiwavelength fresnel diffraction.Opt. Lett.39, 193–196 (2014)..
Zhang, W. H. et al. Twin-image-free holography: a compressive sensing approach.Phys. Rev. Lett.121, 093902 (2018)..
Rivenson, Y., Stern, A.&Javidi, B. Overview of compressive sensing techniques applied in holography [Invited].Appl. Opt.52, A423–A432 (2013)..
Wu, J. C. et al. Single-shot lensless imaging with fresnel zone aperture and incoherent illumination.Light Sci. Appl.9, 53 (2020)..
Latychevskaia, T.&Fink, H. W. Solution to the twin image problem in holography.Phys. Rev. Lett.98, 233901 (2007)..
Brady, D. J. et al. Compressive holography.Opt. Express17, 13040–13049 (2009)..
Rivenson, Y., Stern, A.&Rosen, J. Compressive multiple view projection incoherent holography.Opt. Express19, 6109–6118 (2011)..
Latychevskaia, T.&Fink, H. W. Resolution enhancement in digital holography by self-extrapolation of holograms.Opt. Express21, 7726–7733 (2013)..
Huang, Z. Z.&Cao, L. C. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction.Opt. Lasers Eng.130, 106090 (2020)..
Chen, Y. et al. Single-shot lensfree on-chip quantitative phase microscopy with partially coherent LED illumination.Opt. Lett.47, 6061–6064 (2022)..
Rong, L. et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue.Sci. Rep.5, 8445 (2015)..
Rong, L. et al. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation.Opt. Express22, 17236–17245 (2014)..
Rivenson, Y. et al. Sparsity-based multi-height phase recovery in holographic microscopy.Sci. Rep.6, 37862 (2016)..
Guo, C. et al. Lensfree on-chip microscopy based on dual-plane phase retrieval.Opt. Express27, 35216–35229 (2019)..
Guo, C. et al. Lensfree on-chip microscopy based on single-plane phase retrieval.Opt. Express30, 19855–19870 (2022)..
Gao, Y. H.&Cao, L. C. Iterative projection meets sparsity regularization: towards practical single-shot quantitative phase imaging with in-line holography.Light. Adv. Manuf.4, 37–53 (2023)..
Wu, D. et al. Imaging biological tissue with high-throughput single-pixel compressive holography.Nat. Commun.12, 4712 (2021)..
Huang, Z. Z. et al. Dual-plane coupled phase retrieval for non-prior holographic imaging.PhotoniX3, 3 (2022)..
Zhang, J. L. et al. Resolution analysis in a lens-free on-chip digital holographic microscope.IEEE Trans. Comput. Imaging6, 697–710 (2020)..
Bishara, W. et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution.Opt. Express18, 11181–11191 (2010)..
Farsiu, S. et al. Fast and robust multiframe super resolution.IEEE Trans. Image Process.13, 1327–1344 (2004)..
Hardie, R. C. et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system.Opt. Eng.37, 247–260 (1998)..
Zhang, J. L. et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy.Sci. Rep.7, 11777 (2017)..
Bishara, W., Zhu, H. Y.&Ozcan, A. Holographic opto-fluidic microscopy.Opt. Express18, 27499–27510 (2010)..
Bishara, W. et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array.Lab a Chip11, 1276–1279 (2011)..
Zhang, J. L. et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning.Opt. Lett.43, 3714–3717 (2018)..
Farsiu, S., Elad, M.&Milanfar, P. Multiframe demosaicing and super-resolution of color images.IEEE Trans. Image Process.15, 141–159 (2006)..
Coskun, A. F. et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects.Opt. Express18, 10510–10523 (2010)..
Chambolle, A. An algorithm for total variation minimization and applications.J. Math. Imaging Vis.20, 89–97 (2004)..
Boyd, S.&Vandenberghe, L.Convex Optimization. (Cambridge University Press, Cambridge, 2004).
Rivenson, Y. et al. Phase recovery and holographic image reconstruction using deep learning in neural networks.Light Sci. Appl.7, 17141 (2018)..
Chang, X., Bian, L.&Zhang, J. Large-scale phase retrieval.eLight1, 4 (2021)..
Bohren, C. F.&Huffman, D. R.Absorption and Scattering of Light by Small Particles. (Wiley, New York, 1983).
Popescu, G. et al. Diffraction phase microscopy for quantifying cell structure and dynamics.Opt. Lett.31, 775–777 (2006)..
Bhaduri, B. et al. Diffraction phase microscopy: principles and applications in materials and life sciences.Adv. Opt. Photonics6, 57–119 (2014)..
Zhang, J. W. et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing.Light. Adv. Manuf.2, 333–349 (2021)..
Dyson, J. Common-path interferometer for testing purposes.J. Opt. Soc. Am.47, 386–390 (1957)..
Dyson, J. An interferometer microscope.Proc. R. Soc. A Math., Phys. Eng. Sci.204, 170–187 (1950)..
Shaked, N. T. et al. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing.Adv. Opt. Photonics12, 556–611 (2020)..
Dardikman, G.&Shaked, N. T. Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography? [Invited].J. Opt. Soc. Am. A36, A1–A11 (2019)..
Schedin, S. et al. Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography.Appl. Opt.38, 7056–7062 (1999)..
Saucedo, A. T. et al. Endoscopic pulsed digital holography for 3D measurements.Opt. Express14, 1468–1475 (2006)..
Tayebi, B. et al. Reduced-phase dual-illumination interferometer for measuring large stepped objects.Opt. Lett.39, 5740–5743 (2014)..
Tayebi, B. et al. Large step-phase measurement by a reduced-phase triple-illumination interferometer.Opt. Express23, 11264–11271 (2015)..
Memmolo, P. et al. Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics.Opt. Express19, 25833–25842 (2011)..
Memmolo, P. et al. Recent advances in holographic 3D particle tracking.Adv. Opt. Photonics7, 713–755 (2015)..
Azzem, S. M. et al. Two beams two orthogonal views particle detection.J. Opt.17, 045301 (2015)..
Maurer, C. et al. Depth of field multiplexing in microscopy.Opt. Express18, 3023–3034 (2010)..
Wolbromsky, L., Turko, N. A.&Shaked, N. T. Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing.Opt. Lett.43, 2046–2049 (2018)..
Min, J. W. et al. Dual-wavelength slightly off-axis digital holographic microscopy.Appl. Opt.51, 191–196 (2012)..
Claus, D. et al. Snap-shot topography measurement via dual-VCSEL and dual wavelength digital holographic interferometry.Light. Adv. Manuf.2, 403–414 (2021)..
Polhemus, C. Two-wavelength interferometry.Appl. Opt.12, 2071–2074 (1973)..
Gass, J., Dakoff, A.&Kim, M. K. Phase imaging without 2πambiguity by multiwavelength digital holography.Opt. Lett.28, 1141–1143 (2003)..
Zhou, H. W., Hussain, M. M. R.&Banerjee, P. P. A review of the dual-wavelength technique for phase imaging and 3D topography.Light. Adv. Manuf.3, 314–334 (2022)..
Jang, Y., Jang, J.&Park, Y. K. Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells.Opt. Express20, 9673–9681 (2012)..
Lue, N. et al. Single-shot quantitative dispersion phase microscopy.Appl. Phys. Lett.101, 084101 (2012)..
Tahara, T., Kaku, T.&Arai, Y. Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA).Opt. Express22, 29594–29610 (2014)..
Tayebi, B. et al. Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy.IEEE J. Sel. Top. Quantum Electron.25, 7200708 (2019)..
Jafarfard, M. R. et al. Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness.Opt. Lett.39, 2908–2911 (2014)..
Girshovitz, P.&Shaked, N. T. Doubling the field of view in off-axis low-coherence interferometric imaging.Light Sci. Appl.3, e151 (2014)..
Roitshtain, D. et al. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.Opt. Lett.41, 2354–2357 (2016)..
Rotman-Nativ, N., Turko, N. A.&Shaked, N. T. Flipping interferometry with doubled imaging area.Opt. Lett.43, 5543–5546 (2018)..
Chhaniwal, V. et al. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd's mirror.Opt. Lett.37, 5127–5129 (2012)..
Frenklach, I., Girshovitz, P.&Shaked, N. T. Off-axis interferometric phase microscopy with tripled imaging area.Opt. Lett.39, 1525–1528 (2014)..
Yokozeki, S.&Suzuki, T. Shearing interferometer using the grating as the beam splitter.Appl. Opt.10, 1575–1580 (1971)..
Lohmann, A. W.&Silva, D. E. An interferometer based on the Talbot effect.Opt. Commun.2, 413–415 (1971)..
Patorski, K. I The self-imaging phenomenon and its applications.Prog. Opt.27, 1–108 (1989)..
Shanmugam, P. et al. Variable shearing holography with applications to phase imaging and metrology.Light. Adv. Manuf.3, 193–210 (2022)..
Patorski, K. et al. Three-level transmittance 2D grating with reduced spectrum and its self-imaging.Opt. Express27, 1854–1868 (2019)..
Ling, T. et al. Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating.Opt. Lett.40, 2245–2248 (2015)..
Chowdhury, S. et al. Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging.Opt. Lett.40, 4839–4842 (2015)..
Nygate, Y. N. et al. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells.Opt. Lett.43, 2587–2590 (2018)..
Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung.Arch. f.ür. Mikroskopische Anat.9, 413–468 (1873)..
Born, M.&Wolf, E.Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th edn (Cambridge University Press, Cambridge, 1999).
Cotte, Y. et al. Sub-Rayleigh resolution by phase imaging.Opt. Lett.35, 2176–2178 (2010)..
Horstmeyer, R. et al. Standardizing the resolution claims for coherent microscopy.Nat. Photonics10, 68–71 (2016)..
Hosseini, P. et al. Scanning color optical tomography (SCOT).Opt. Express23, 19752–19762 (2015)..
Mirsky, S. K.&Shaked, N. T. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution.Opt. Express27, 26708–26720 (2019)..
Ueda, M.&Sato, T. Superresolution by holography.J. Opt. Soc. Am.61, 418–419 (1971)..
Ueda, M., Sato, T.&Kondo, M. Superresolution by multiple superposition of image holograms having different carrier frequencies.Opt. Acta. Int. J. Opt.20, 403–410 (1973)..
Leith, E. N., Angell, D.&Kuei, C. P. Superresolution by incoherent-to-coherent conversion.J. Opt. Soc. Am. A4, 1050–1054 (1987)..
Micó, V. et al. Resolution enhancement in quantitative phase microscopy.Adv. Opt. Photonics11, 135–214 (2019)..
Mico, V. et al. Single-step superresolution by interferometric imaging.Opt. Express12, 2589–2596 (2004)..
Zalevsky, Z., Micó, V.&Garcia, J. Nanophotonics for optical super resolution from an information theoretical perspective: a review.J. Nanophotonics3, 032502 (2009)..
Granero, L. et al. Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration.Opt. Lasers Eng.82, 104–112 (2016)..
Mirsky, S. K., Barnea, I.&Shaked, N. T. Dynamic tomographic phase microscopy by double six-pack holography.ACS Photonics9, 1295–1303 (2022)..
Kuś, A. et al. Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper).ETRI J.41, 61–72 (2019)..
Barbastathis, G.&Psaltis, D. Volume holographic multiplexing methods. inHolographic Data Storage(eds Coufal, H. J., Psaltis, D.&Sincerbox, G. T.) (Berlin: Springer, 2000).
Kujawinska, M., Jozwicka, A.&Kozacki, T. Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements. Proceedings of the SPIE 7063, Interferometry ⅩⅣ: Techniques and Analysis. San Diego: SPIE, 2008, 70630F.https://doi.org/10.1117/12.798314https://doi.org/10.1117/12.798314.
Mudry, E. et al. Mirror-assisted tomographic diffractive microscopy with isotropic resolution.Opt. Lett.35, 1857–1859 (2010)..
Kostencka, J., Kozacki, T.&Józwik, M. Holographic tomography with object rotation and two-directional off-axis illumination.Opt. Express25, 23920–23934 (2017)..
Chowdhury, S. et al. Refractive index tomography with structured illumination.Optica4, 537–545 (2017)..
Balasubramani, V. et al. Adaptive wavefront correction structured illumination holographic tomography.Sci. Rep.9, 10489 (2019)..
Lee, K. R. et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography.Opt. Lett.42, 999–1002 (2017)..
Sung, Y. Snapshot holographic optical tomography.Phys. Rev. Appl.11, 014039 (2019)..
Huang, Z. Z.&Cao, L. C. High bandwidth-utilization digital holographic multiplexing: an approach using Kramers–Kronig relations.Adv. Photonics Res.3, 2100273 (2022)..
Lucente, M. Computational holographic bandwidth compression.IBM Syst. J.35, 349–365 (1996)..
Memmolo, P. et al. Compression of digital holograms via adaptive-sparse representation.Opt. Lett.35, 3883–3885 (2010)..
Naughton, T. J. et al. Compression of digital holograms for three-dimensional object reconstruction and recognition.Appl. Opt.41, 4124–4132 (2002)..
Cheremkhin, P. A.&Kurbatova, E. A. Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts.Sci. Rep.9, 7561 (2019)..
Shortt, A. E., Naughton, T. J.&Javidi, B. Compression of digital holograms of three-dimensional objects using wavelets.Opt. Express14, 2625–2630 (2006)..
De, L.&Kronig, R. On the theory of dispersion of x-rays.J. Opt. Soc. Am.12, 547–557 (1926)..
Kramers, H. A. La diffusion de la lumiere par les atomes.Atti Cong. Intern. Fis. (Trans. Volta. Centenary Congr.) Como.2, 545–557 (1927)..
Marple, L. Computing the discrete-time "analytic" signal via FFT.IEEE Trans. Signal Process.47, 2600–2603 (1999)..
Havlicek, J. P., Havlicek, J. W.&Bovik, A. C. The analytic image. Proceedings of International Conference on Image Processing. Santa Barbara: IEEE, 1997, 446–449.https://doi.org/10.1109/ICIP.1997.638804https://doi.org/10.1109/ICIP.1997.638804.
Ikeda, T. et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems.Opt. Lett.30, 1165–1167 (2005)..
Pavillon, N. et al. Suppression of the zero-order term in off-axis digital holography through nonlinear filtering.Appl. Opt.48, H186–H195 (2009)..
Picart, P. et al. Spatial bandwidth extended reconstruction for digital color Fresnel holograms.Opt. Express17, 9145–9156 (2009)..
Oh, J., Hugonnet, H.&Park, Y. K. Quantitative phase imaging via the holomorphic property of complex optical fields.Phys. Rev. Res.5, L022014 (2023)..
Sun, J. S. et al. High-speed Fourier ptychographic microscopy based on programmable annular illuminations.Sci. Rep.8, 7669 (2018)..
Li, J. J. et al. Transportof intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy.Light Sci. Appl.11, 154 (2022)..
Li, Y. T. et al. Fast quantitative phase imaging based on Kramers-Kronig relations in space domain.Opt. Express29, 41067–41080 (2021)..
Li, Y. T. et al. Spectrum sampling optimization for quantitative phase imaging based on Kramers–Kronig relations.Opt. Lett.47, 2786–2789 (2022)..
Lee, C. et al. Single-shot wide-field topography measurement using spectrally multiplexed reflection intensity holography via space-domain Kramers–Kronig relations.Opt. Lett.47, 1025–1028 (2022)..
Lee, K. R., Lim, J.&Park, Y. K. Full-field quantitative X-ray phase nanotomography via space-domain Kramers–Kronig relations.Optica10, 407–414 (2023)..
Gao, P.&Yuan, C. J. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review.Light. Adv. Manuf.3, 105–120 (2022)..
Alexandrov, S. A. et al. Synthetic aperture Fourier holographic optical microscopy.Phys. Rev. Lett.97, 168102 (2006)..
Zheng, C. et al. High spatial and temporal resolution synthetic aperture phase microscopy.Adv. Photonics2, 065002 (2020)..
Chen, X. et al. Superresolution structured illumination microscopy reconstruction algorithms: a review.Light Sci. Appl.12, 172 (2023)..
Gao, P., Pedrini, G.&Osten, W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy.Opt. Lett.38, 1328–1330 (2013)..
Park, Y. K. et al. Speckle-field digital holographic microscopy.Opt. Express17, 12285–12292 (2009)..
Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium.Phys. Rev. Lett.107, 023902 (2011)..
Zheng, J. J. et al. Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination.J. Opt.17, 085301 (2015)..
Stark, A. W. et al. Miniaturization of a coherent monocular structured illumination system for future combination with digital holography.Light. Adv. Manuf.3, 437–444 (2022)..
Hu, C. F. et al. Harmonic optical tomography of nonlinear structures.Nat. Photonics14, 564–569 (2020)..
Hellwarth, R.&Christensen, P. Nonlinear optical microscope using second harmonic generation.Appl. Opt.14, 247–248 (1975)..
Chen, X. Y. et al. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure.Nat. Protoc.7, 654–669 (2012)..
Campagnola, P. J.&Dong, C. Y. Second harmonic generation microscopy: principles and applications to disease diagnosis.Laser Photonics Rev.5, 13–26 (2011)..
Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence.J. Cell Biol.89, 141–145 (1981)..
Neumann, A., Kuznetsova, Y.&Brueck, S. R. J. Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination.Opt. Express16, 20477–20483 (2008)..
von Olshausen, P.&Rohrbach, A. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit.Opt. Lett.38, 4066–4069 (2013)..
Zhang, J. W. et al. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection.Opt. Express23, 27328–27334 (2015)..
Maire, G. et al. Phase imaging and synthetic aperture super-resolution via total internal reflection microscopy.Opt. Lett.43, 2173–2176 (2018)..
Kuś, A, Krauze, W&Kujawińska, M. Limited-angle holographic tomography with optically controlled projection generation Proceedings of the SPIE 9330, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing ⅩⅫ. 933007 (SPIE: San Francisco, 2015).
Shin, S. et al. Active illumination using a digital micromirror device for quantitative phase imaging.Opt. Lett.40, 5407–5410 (2015)..
Charrière, F. et al. Cell refractive index tomography by digital holographic microscopy.Opt. Lett.31, 178–180 (2006)..
Jin, X. Y. et al. Continuous-wave terahertz in-line holographic diffraction tomography with the scattering fields reconstructed by a physics-enhanced deep neural network.Photonics Res.11, 2149–2158 (2023)..
Górski, W. Tomographic microinterferometry of optical fibers.Opt. Eng.45, 125002 (2006)..
Kostencka, J. et al. Accurate approach to capillary-supported optical diffraction tomography.Opt. Express23, 7908–7923 (2015)..
Memmolo, P. et al. 3D morphometry of red blood cells by digital holography.Cytom. Part A85, 1030–1036 (2014)..
Habaza, M. et al. Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers.Opt. Lett.40, 1881–1884 (2015)..
Müller, P. et al. Single-cell diffraction tomography with optofluidic rotation about a tilted axis.Proceedings of the SPIE 9548, Optical Trapping and Optical Micromanipulation XII(pp. 95480U. SPIE, San Diego, 2015).
Merola, F. et al. Tomographic flow cytometry by digital holography.Light Sci. Appl.6, e16241 (2017)..
Huang, Z. Z. et al. Aberration-free synthetic aperture phase microscopy based on alternating direction method.Opt. Lasers Eng.160, 107301 (2023)..
Huang, Z. Z.&Cao, L. C. Phase aberration separation for holographic microscopy by alternating direction sparse optimization.Opt. Express31, 12520–12533 (2023)..
Debailleul, M. et al. High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples.Opt. Lett.34, 79–81 (2009)..
Vertu, S. et al. Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space.Cent. Eur. J. Phys.7, 22–31 (2009)..
Lin, Y. C.&Cheng, C. J. Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography.J. Opt.16, 065401 (2014)..
Vertu, S. et al. Improved and isotropic resolution in tomographic diffractive microscopy combining sample and illumination rotation.Cent. Eur. J. Phys.9, 969–974 (2011)..
Simon, B. et al. Tomographic diffractive microscopy with isotropic resolution.Optica4, 460–463 (2017)..
Zhang, T. et al. Far-field diffraction microscopy at λ/10 resolution.Optica3, 609–612 (2016)..
Chen, M. et al. Multi-layer Born multiple-scattering model for 3D phase microscopy.Optica7, 394–403 (2020)..
Yasuhiko, O.&Takeuchi, K. In-silico clearing approach for deep refractive index tomography by partial reconstruction and wave-backpropagation.Light Sci. Appl.12, 101 (2023)..
Kamilov, U. S. et al. Learning approach to optical tomography.Optica2, 517–522 (2015)..
Lim, J.et al. High-fidelity optical diffraction tomography of multiple scattering samples.Light Sci. Appl.8, 82 (2019)..
Saba, A. et al. Physics-informed neural networks for diffraction tomography.Adv. Photonics4, 066001 (2022)..
Lee, M., Hugonnet, H.&Park, Y. K. Inverse problem solver for multiple light scattering using modified Born series.Optica9, 177–182 (2022)..
Pham, T. A. et al. Three-dimensional optical diffraction tomography with lippmann-schwinger model.IEEE Trans. Comput. Imaging6, 727–738 (2020)..
Song, S. et al. Polarization-sensitive intensity diffraction tomography.Light Sci. Appl.12, 124 (2023)..
Saba, A. et al. Polarization-sensitive optical diffraction tomography.Optica8, 402–408 (2021)..
Mu, S. Q. et al. Multislice computational model for birefringent scattering.Optica10, 81–89 (2023)..
de Groot, P. J. et al. Contributions of holography to the advancement of interferometric measurements of surface topography.Light. Adv. Manuf.3, 258–277 (2022)..
Häusler, G.&Willomitzer, F. Reflections about the holographic and non-holographic acquisition of surface topography: where are the limits?Light. Adv. Manuf.3, 226–235 (2022)..
Niu, M. X. et al. Portable quantitative phase microscope for material metrology and biological imaging.Photonics Res.8, 1253–1259 (2020)..
Edwards, C. et al. Optically monitoring and controlling nanoscale topography during semiconductor etching.Light Sci. Appl.1, e30 (2012)..
Park, Y. K., Depeursinge, C.&Popescu, G. Quantitative phase imaging in biomedicine.Nat. Photonics12, 578–589 (2018)..
Hamilton, D. K.&Sheppard, C. J. R. Differential phase contrast in scanning optical microscopy.J. Microsc.133, 27–39 (1984)..
Mehta, S. B.&Sheppard, C. J. R. Partially coherent image formation in differential interference contrast (DIC) microscope.Opt. Express16, 19462–19479 (2008)..
Mario, B.&Patrizia, B.Introduction to Inverse Problems in Imaging. (CRC Press, Boca Raton, 1998).
Ford, T. N., Chu, K. K.&Mertz, J. Phase-gradient microscopy in thick tissue with oblique back-illumination.Nat. Methods9, 1195–1197 (2012)..
Ledwig, P.&Robles, F. E. Epi-mode tomographic quantitative phase imaging in thick scattering samples.Biomed. Opt. Express10, 3605–3621 (2019)..
Ledwig, P.&Robles, F. E. Quantitative 3D refractive index tomography of opaque samples in epi-mode.Optica8, 6–14 (2021)..
LeCun, Y., Bengio, Y.&Hinton, G. Deep learning.Nature521, 436–444 (2015)..
Goodfellow, I., Bengio, Y.&Courville, A.Deep Learning. (MIT Press, Cambridge, 2016).
Jin, K. H. et al. Deep convolutional neural network for inverse problems in imaging.IEEE Trans. Image Process.26, 4509–4522 (2017)..
Barbastathis, G., Ozcan, A.&Situ, G. H. On the use of deep learning for computational imaging.Optica6, 921–943 (2019)..
Ma, W. et al. Deep learning for the design of photonic structures.Nat. Photonics15, 77–90 (2021)..
Wiecha, P. R. et al. Deep learning in nano-photonics: inverse design and beyond.Photonics Res.9, B182–-B200 (2021)..
Rivenson, Y., Wu, Y. C.&Ozcan, A. Deep learning in holography and coherent imaging.Light Sci. Appl.8, 85 (2019)..
Sheridan, J. T. et al. Roadmap on holography.J. Opt.22, 123002 (2020)..
Situ, G. H. Deep holography.Light. Adv. Manuf.3, 278–300 (2022)..
Wang, F. et al. Phase imaging with an untrained neural network.Light Sci. Appl.9, 77 (2020)..
Wang, H., Lyu, M.&Situ, G. H. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction.Opt. Express26, 22603–22614 (2018)..
Zhang, G. et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning.Opt. Express26, 19388–19405 (2018)..
Wang, K. Q. et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction.Opt. Lett.44, 4765–4768 (2019)..
Niknam, F., Qazvini, H.&Latifi, H. Holographic optical field recovery using a regularized untrained deep decoder network.Sci. Rep.11, 10903 (2021)..
Li, Z. S. et al. Deep learning assisted variational Hilbert quantitative phase imaging.Opto-Electron. Sci.2, 220023 (2023)..
Li, Z. S. et al. High bandwidth-utilization digital holographic reconstruction using an untrained neural network.Appl. Sci.12, 10656 (2022)..
Nguyen, T. et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.Opt. Express25, 15043–15057 (2017)..
Pitkäaho, T., Manninen, A.&Naughton, T. J. Focus prediction in digital holographic microscopy using deep convolutional neural networks.Appl. Opt.58, A202–A208 (2019)..
Ren, Z. B., Xu, Z. M.&Lam, E. Y. Learning-based nonparametric autofocusing for digital holography.Optica5, 337–344 (2018)..
Huang, L. Z. et al. Holographic image reconstruction with phase recovery and autofocusing using recurrent neural networks.ACS Photonics8, 1763–1774 (2021)..
Zhang, J. C. et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks.Opt. Express27, 14903–14912 (2019)..
Wang, K. Q. et al. One-step robust deep learning phase unwrapping.Opt. Express27, 15100–15115 (2019)..
Spoorthi, G. E., Gorthi, R. K. S. S.&Gorthi, S. PhaseNet 2.0: phase unwrapping of noisy data based on deep learning approach.IEEE Trans. Image Process.29, 4862–4872 (2020)..
Yang, F. S. et al. Robust phase unwrapping via deep image prior for quantitative phase imaging.IEEE Trans. Image Process.30, 7025–7037 (2021)..
Wu, Y. C. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery.Optica5, 704–710 (2018)..
Rivenson, Y. et al. Deep learning microscopy.Optica4, 1437–1443 (2017)..
Jeon, W. et al. Speckle noise reduction for digital holographic images using multi-scale convolutional neural networks.Opt. Lett.43, 4240–4243 (2018)..
Yan, K. T. et al. Fringe pattern denoising based on deep learning.Opt. Commun.437, 148–152 (2019)..
Tahon, M., Montresor, S.&Picart, P. Towards reduced CNNs for de-noising phase images corrupted with speckle noise.Photonics8, 255 (2021)..
McCann, M. T., Jin, K. H.&Unser, M. Convolutional neural networks for inverse problems in imaging: a review.IEEE Signal Process. Mag.34, 85–95 (2017)..
Goldstein, R. M., Zebker, H. A.&Werner, C. L. Satellite radar interferometry: Two-dimensional phase unwrapping.Radio Sci.23, 713–720 (1988)..
Lyu, M. et al. Fast autofocusing in digital holography using the magnitude differential.Appl. Opt.56, F152–F157 (2017)..
Bian, Y. X. et al. Optical refractometry using lensless holography and autofocusing.Opt. Express26, 29614–29628 (2018)..
Zhang, Y. B. et al. Edge sparsity criterion for robust holographic autofocusing.Opt. Lett.42, 3824–3827 (2017)..
Zhang, Y. Y. et al. Hough transform-based multi-object autofocusing compressive holography.Appl. Opt.62, D23–D30 (2023)..
Zhang, X. Y., Wang, F.&Situ, G. H. BlindNet: an untrained learning approach toward computational imaging with model uncertainty.J. Phys. D Appl. Phys.55, 034001 (2022)..
Ren, Z. B., Xu, Z. M.&Lam, E. Y. Autofocusing in digital holography using deep learning. Proceedings of the SPIE 10499, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing ⅩⅩⅤ. San Francisco: SPIE, 2018, 104991V.https://doi.org/10.1117/12.2289282https://doi.org/10.1117/12.2289282.
Ronneberger, O., Fischer, P.&Brox, T. U-Net: convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015, 234-241.https://doi.org/10.1007/978-3-319-24574-4_28https://doi.org/10.1007/978-3-319-24574-4_28.
He, K. M. et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016, 770–778.
Tan, M. X.&Le, Q. V. Efficientnet: rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning. Long Beach: ICML, 2019, 6105–6114.
Hu, C. F. et al. Live-dead assay on unlabeled cells using phase imaging with computational specificity.Nat. Commun.13, 713 (2022)..
Jo, Y. J. et al. Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning.Nat. Cell Biol.23, 1329–1337 (2021)..
Kim, K. et al. Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging.Biomed. Opt. Express8, 5688–5697 (2017)..
Chen, X. et al. Artificial confocal microscopy for deep label-free imaging.Nat. Photonics17, 250–258 (2023)..
Zhou, T. K. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit.Nat. Photonics15, 367–373 (2021)..
Sjöberg, J. et al. Nonlinear black-box modeling in system identification: a unified overview.Automatica31, 1691–1724 (1995)..
Karpatne, A. et al. Theory-guided data science: a new paradigm for scientific discovery from data.IEEE Trans. Knowl. Data Eng.29, 2318–2331 (2017)..
Ba, Y. H., Zhao, G. Y.&Kadambi, A. Blending diverse physical priors with neural networks. Print athttps://doi.org/10.48550/arXiv.1910.00201https://doi.org/10.48550/arXiv.1910.00201(2019).
Lee, C. et al. Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data.Nat. Mach. Intell.5, 35–45 (2023)..
Wang, F. et al. Single-pixel imaging using physics enhanced deep learning.Photonics Res.10, 104–110 (2022)..
Wang, F. et al. Far-field super-resolution ghost imaging with a deep neural network constraint.Light Sci. Appl.11, 1 (2022)..
Li, R. J. et al. Physics-enhanced neural network for phase retrieval from two diffraction patterns.Opt. Express30, 32680–32692 (2022)..
Lobo, J. L. et al. Spiking Neural Networks and online learning: an overview and perspectives.Neural Netw.121, 88–100 (2020)..
Bachg, A. C. et al. Phenotypic analysis ofMyo10knockout (Myo10tm2/tm2) mice lacking full-length (motorized) but not brain-specific headless myosin X.Sci. Rep.9, 597 (2019)..
Popescu, G. et al. Erythrocyte structure and dynamics quantified by Hilbert phase microscopy.J. Biomed. Opt.10, 060503 (2005)..
Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology.J. Biomed. Photonics Eng.2, 020201 (2016)..
Mitchison, J. M. Growth during the cell cycle.Int. Rev. Cytol.226, 165–258 (2003)..
Tzur, A. et al. Cell growth and size homeostasis in proliferating animal cells.Science325, 167–171 (2009)..
Zicha, D.&Dunn, G. A. An image processing system for cell behaviour studies in subconfluent cultures.J. Microsc.179, 11–21 (1995)..
Godin, M. et al. Using buoyant mass to measure the growth of single cells.Nat. Methods7, 387–390 (2010)..
Mitchison, J. M. Single cell studies of the cell cycle and some models.Theor. Biol. Med. Model.2, 4 (2005)..
Popescu, G. et al. Optical imaging of cell mass and growth dynamics.Am. J. Physiol.-Cell Physiol.295, C538–C544 (2008)..
Mir, M. et al. Optical measurement of cycle-dependent cell growth.Proc. Natl Acad. Sci. USA108, 13124–13129 (2011)..
Jourdain, P. et al. Simultaneous optical recording in multiple cells by digital holographic microscopy of chloride current associated to activation of the ligand-gated chloride channel GABAAreceptor.PLoS One7, e51041 (2012)..
Dardikman-Yoffe, G. et al. High-resolution 4-D acquisition of freely swimming human sperm cells without staining.Sci. Adv.6, eaay7619 (2020)..
Pirone, D. et al. 3D imaging lipidometry in single cell by in-flow holographic tomography.Opto-Electron. Adv.6, 220048 (2023)..
Kim, K. et al. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes.Sci. Rep.6, 36815 (2016)..
Shin, J. et al. Long-term label-free assessments of individual bacteria using three-dimensional quantitative phase imaging and hydrogel-based immobilization.Sci. Rep.13, 46 (2023)..
Bedrossian, M., Lindensmith, C.&Nadeau, J. L. Digital holographic microscopy, a method for detection of microorganisms in plume samples from Enceladus and other icy worlds.Astrobiology17, 913–925 (2017)..
Yourassowsky, C.&Dubois, F. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range.Opt. Express22, 6661–6673 (2014)..
Pirone, D. et al. Stain-free identification of cell nuclei using tomographic phase microscopy in flow cytometry.Nat. Photonics16, 851–859 (2022)..
Backman, V. et al. Detection of preinvasive cancer cells.Nature406, 35–36 (2000)..
Uttam, S. et al. Early prediction of cancer progression by depth-resolved nanoscale mapping of nuclear architecture from unstained tissue specimens.Cancer Res.75, 4718–4727 (2015)..
Wang, P. et al. Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis.Opt. Lett.35, 2840–2842 (2010)..
Miccio, L. et al. Perspectives on liquid biopsy for label-free detection of "circulating tumor cells" through intelligent lab-on-chips.View1, 20200034 (2020)..
Majeed, H. et al. Quantitative phase imaging for medical diagnosis.J. Biophotonics10, 177–205 (2017)..
Cacace, T., Bianco, V.&Ferraro, P. Quantitative phase imaging trends in biomedical applications.Opt. Lasers Eng.135, 106188 (2020)..
Huang, D. et al. Identifying fates of cancer cells exposed to mitotic inhibitors by quantitative phase imaging.Analyst145, 97–106 (2020)..
Saleh, T. et al. Tumor cell escape from therapy-induced senescence.Biochem. Pharmacol.162, 202–212 (2019)..
Huang, D. et al. High-speed live-cell interferometry: a new method for quantifying tumor drug resistance and heterogeneity.Anal. Chem.90, 3299–3306 (2018)..
Kim, Y. et al. Profiling individual human red blood cells using common-path diffraction optical tomography.Sci. Rep.4, 6659 (2014)..
Kaushansky, K. et al.Williams Hematology. 8th edn. (McGraw-Hill Medical, New York, 2010).
Hejna, M. et al. High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells.Sci. Rep.7, 11943 (2017)..
Choi, S. Y. et al. Three-dimensional label-free visualization and quantification of polyhydroxyalkanoates in individual bacterial cell in its native state.Proc. Natl Acad. Sci. USA118, e2103956118 (2021)..
Calabuig, A.et al. Investigating fibroblast cells under "safe" and "injurious" blue-light exposure by holographic microscopy.J. Biophotonics10, 919–927 (2017)..
Majeed, H. et al. Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM).Sci. Rep.8, 6875 (2018)..
Park, Y. K. et al. Refractive index maps and membrane dynamics of human red blood cells parasitized byPlasmodium falciparum.Proc. Natl Acad. Sci. USA105, 13730–13735(2008)..
Lee, J. C. M.&Discher, D. E. Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding.Biophys. J.81, 3178–3192 (2001)..
Fackler, O. T.&Grosse, R. Cell motility through plasma membrane blebbing.J. Cell Biol.181, 879–884 (2008)..
Wang, Z. et al. Tissue refractive index as marker of disease.J. Biomed. Opt.16, 116017 (2011)..
Nguyen, T. L. et al. Cell viscoelasticity is linked to fluctuations in cell biomass distributions.Sci. Rep.10, 7403 (2020)..
Ma, L. H. et al. Phase correlation imaging of unlabeled cell dynamics.Sci. Rep.6, 32702 (2016)..
Shimobaba, T. et al. Real-time digital holographic microscopy using the graphic processing unit.Opt. Express16, 11776–11781 (2008)..
Fratz, M. et al. Digital holography in production: an overview.Light. Adv. Manuf.2, 283–295 (2021)..
Kawata, S.&Sun, H. B. Two-photon photopolymerization as a tool for making micro-devices.Appl. Surf. Sci.208–209, 153–158 (2003)..
Kim, J. M.&Muramatsu, H. Two-photon photopolymerized tips for adhesion-free scanning-probe microscopy.Nano Lett.5, 309–314 (2005)..
Goral, J.&Deo, M. Nanofabrication of synthetic nanoporous geomaterials: from nanoscale-resolution 3D imaging to nano-3D-printed digital (shale) rock.Sci. Rep.10, 21596 (2020)..
He, Y. P. et al. Characterization of two-photon photopolymerization fabrication using high-speed optical diffraction tomography.Addit. Manuf.60, 103293 (2022)..
Mu, S. Q. et al. Three dimension refractive index characterization for photonic waveguides.J. Lightwave Technol.40, 2474–2480 (2022)..
Li, M. et al. Femtosecond laser direct writing of integrated photonic quantum chips for generating path-encoded bell states.Micromachines11, 1111 (2020)..
Zhang, Q. et al. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering.Opt. Express25, 13263–13270 (2017)..
Zhang, Q. et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering.Photonics Res.7, 503–507 (2019)..
Ajates, J. G. et al. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides.Opt. Mater. Express8, 1890–1901 (2018)..
Wang, Z. et al. Digital holography as metrology tool at micro-nanoscale for soft matter.Light. Adv. Manuf.3, 151–176 (2022)..
Ferraro, V. et al. Axisymmetric bare freestanding films of highly viscous liquids: preparation and real-time investigation of capillary leveling.J. Colloid Interface Sci.596, 493–499 (2021)..
Ferraro, V. et al. Full-field and quantitative analysis of a thin liquid film at the nanoscale by combining digital holography and white light interferometry.J. Phys. Chem. C.125, 1075–1086 (2021)..
Mandracchia, B. et al. Quantitative imaging of the complexity in liquid bubbles' evolution reveals the dynamics of film retraction.Light Sci. Appl.8, 20 (2019)..
Ibrahim, D. G. A.&Yasui, T. High-precision 3D surface topography measurement using high-stable multi-wavelength digital holography referenced by an optical frequency comb.Opt. Lett.43, 1758–1761 (2018)..
Ibrahim, D. G. A.&Yasui, T. Multi-object investigation using two-wavelength phase-shift interferometry guided by an optical frequency comb.Appl. Phys. Lett.112, 171101 (2018)..
Park, Y. K. et al. Diffraction phase and fluorescence microscopy.Opt. Express14, 8263–8268 (2006)..
Lue, N. et al. Live cell refractometry using hilbert phase microscopy and confocal reflectance microscopy.J. Phys. Chem. A113, 13327–13330 (2009)..
Chowdhury, S. et al. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy.Biomed. Opt. Express8, 2496–2518 (2017)..
Kemper, B. et al. Influence of sample preparation and identification of subcelluar structures in quantitative holographic phase contrast microscopy. Proceedings of the SPIE 7715, Biophotonics: Photonic Solutions for Better Health Care Ⅱ. Brussels: SPIE, 2010, 771504.https://doi.org/10.1117/12.854004https://doi.org/10.1117/12.854004.
McNeal, A. S. et al. BRAFV600Einduces reversible mitotic arrest in human melanocytes via microRNA-mediated suppression of AURKB.eLife10, e70385 (2021)..
Barroso, Á. et al. Three-dimensional exploration and mechano-biophysical analysis of the inner structure of living cells.Small9, 885–893 (2013)..
Weaver, S. S. et al. Simultaneous cell traction and growth measurements using light.J. Biophotonics12, e201800182 (2019)..
Tamamitsu, M. et al. Label-free biochemical quantitative phase imaging with mid-infrared photothermal effect.Optica7, 359–366 (2020)..
Baiz, C. R. et al. Vibrational spectroscopic map, vibrational spectroscopy, and intermolecular interaction.Chem. Rev.120, 7152–7218 (2020)..
Kang, J. W. et al. Combined confocal raman and quantitative phase microscopy systemfor biomedical diagnosis.Biomed. Opt. Express2, 2484–2492 (2011)..
Singh, S. P. et al. Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy.Sci. Rep.7, 10829 (2017)..
Dubey, V. et al. Low coherence quantitative phase microscopy with machine learning model and raman spectroscopy for the study of breast cancer cells and their classification.Appl. Opt.58, A112–A119 (2019)..
Jung, J. H. et al. Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography.Sci. Rep.8, 6524 (2018)..
Schürmann, M. et al. Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography.J. Biophotonics11, e201700145 (2018)..
Chowdhury, S. et al. Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction.Biomed. Opt. Express8, 5776–5793 (2017)..
Descloux, A. et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy.Nat. Photonics12, 165–172 (2018)..
Shin, S. et al. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device.Sci. Rep.8, 9183 (2018)..
Dong, D. S. et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome.Light Sci. Appl.9, 11 (2020)..
Guo, S. M. et al. Revealing architectural order with quantitative label-free imaging and deep learning.eLife9, e55502 (2020)..
Huang, B., Bates, M.&Zhuang, X. W. Super-resolution fluorescence microscopy.Annu. Rev. Biochem.78, 993–1016 (2009)..
Defienne, H. et al. Polarization entanglement-enabled quantum holography.Nat. Phys.17, 591–597 (2021)..
Shin, S. et al. Tomographic measurement of dielectric tensors at optical frequency.Nat. Mater.21, 317–324 (2022)..
Cha, Y. J. et al. Microstructure arrays of DNA using topographic control.Nat. Commun.10, 2512 (2019)..
Almohammadi, H., Bagnani, M.&Mezzenga, R. Flow-induced order–order transitions in amyloid fibril liquid crystalline tactoids.Nat. Commun.11, 5416 (2020)..
Riching, K. M. et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence.Biophys. J.107, 2546–2558 (2014)..
https://github.com/THUHoloLab/Holography_QPI_codehttps://github.com/THUHoloLab/Holography_QPI_code.
Zhang, T.&Yamaguchi, I. Three-dimensional microscopy with phase-shifting digital holography.Opt. Lett.23, 1221–1223 (1998)..
Milgram, J. H.&Li, W. C. Computational reconstruction of images from holograms.Appl. Opt.41, 853–864 (2002)..
Radon, J. On the determination of functions from their integral values along certain manifolds.IEEE Trans. Med. Imaging5, 170–176 (1986)..
Cloetens, P. et al. Quantitative phase tomography by holographic reconstruction. Proceedings of the SPIE 3772, Developments in X-Ray Tomography Ⅱ. Denver: SPIE, 1999, 279-290.https://doi.org/10.1117/12.854004https://doi.org/10.1117/12.854004.
Lauer, V. New approach to optical diffraction tomography yielding a vector equation ofdiffraction tomography and a novel tomographic microscope.J. Microsc.205, 165–176 (2002)..
Charrière, F. et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba.Opt. Express14, 7005–7013 (2006)..
Cotte, Y. et al. Marker-free phase nanoscopy.Nat. Photonics7, 113–117 (2013)..
Streibl, N. Phase imaging by the transport equation of intensity.Opt. Commun.49, 6–10 (1984)..
Sinha, A. et al. Lensless computational imaging through deep learning.Optica4, 1117–1125 (2017)..
Beghuin, D.et al. Single acquisition polarisation imaging with digital holography.Electron. Lett.35, 2053–2055 (1999)..
Rubin, M. et al. Six-pack off-axis holography.Opt. Lett.42, 4611–4614 (2017)..
Dardikman, G. et al. Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization.Opt. Express25, 33400–33415 (2017)..
Pitkäaho, T.,Manninen, A.&Naughton, T. J. Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy.Proceedings of the Digital Holography and Three-Dimensional Imaging. (OSA, JeJu Island, 2017).
Liu, T. R. et al. Deep learning-based super-resolution in coherent imaging systems.Sci. Rep.9, 3926 (2019)..
Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning.Light Sci. Appl.8, 23 (2019)..
Kandel, M. E. et al. Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments.Nat. Commun.11, 6256 (2020)..
Rahman, M. S. S.&Ozcan, A. Computer-free, all-optical reconstruction of holograms using diffractive networks.ACS Photonics8, 3375–3384 (2021)..
Mengu, D.&Ozcan, A. All-optical phase recovery: diffractive computing for quantitative phase imaging.Adv. Opt. Mater.10, 2200281 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution