1.Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074 Hubei, China
2.Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 Hubei, China
Fengwan Guo (fwg@pku.edu.cn)
Hongwei Han (hongwei.han@mail.hust.edu.cn)
Published:31 October 2024,
Published Online:03 September 2024,
Received:12 October 2023,
Revised:07 April 2024,
Accepted:20 April 2024
Scan QR Code
Yang, C., Hu, W. J. & Liu, J. L. et al. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light: Science & Applications, 13, 2027-2074 (2024).
Yang, C., Hu, W. J. & Liu, J. L. et al. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light: Science & Applications, 13, 2027-2074 (2024). DOI: 10.1038/s41377-024-01461-x.
In just over a decade
certified single-junction perovskite solar cells (PSCs) boast an impressive power conversion efficiency (PCE) of 26.1%. Such outstanding performance makes it highly viable for further development. Here
we have meticulously outlined challenges that arose during the industrialization of PSCs and proposed their corresponding solutions based on extensive research. We discussed the main challenges in this field including technological limitations
multi-scenario applications
sustainable development
etc. Mature photovoltaic solutions provide the perovskite community with invaluable insights for overcoming the challenges of industrialization. In the upcoming stages of PSCs advancement
it has become evident that addressing the challenges concerning long-term stability and sustainability is paramount. In this manner
we can facilitate a more effective integration of PSCs into our daily lives.
Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L.&Ahmed, N. Solar energy—a look into power generation, challenges, and a solar-powered future.Int. J. Energy Res.43, 1049–1067 (2019)..
Guney, M. S. Solar power and application methods.Renew. Sust. Energy Rev.57, 776–785 (2016)..
Green, M. A. et al. Solar cell efficiency tables (version 51).Prog. Photovoltaics26, 3–12 (2018)..
Lee, S. -W., Bae, S., Kim, D.&Lee, H. -S. Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells.Adv. Mater.32, 2002202 (2020)..
Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J.&Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites.Adv. Mater.26, 1584–1589, (2014)..
Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells.J. Phys. Chem. Lett.4, 3623–3630 (2013)..
Kojima, A., Teshima, K., Shirai, Y.&Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J. Am. Chem. Soc.131, 6050–6051 (2009)..
NREL. National Renewable Energy Laboratory Best ResearchCell Efficiency Chart.https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv.pdfhttps://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv.pdf(NREL, 2023).
Boyd, C. C., Cheacharoen, R., Leijtens, T.&McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics.Chem. Rev.119, 3418–3451 (2019)..
Li, X. et al. On-device lead-absorbing tapes for sustainable perovskite solar cells.Nat. Sustain.4, 1038–1041 (2021)..
Li, Z. et al. Scalable fabrication of perovskite solar cells.Nat. Revi. Mater.3, 18017 (2018)..
Li, D. et al. A review on scaling up perovskite solar cells.Adv. Funct. Mater.31, 2008621 (2021)..
Park, N. -G.&Segawa, H. Research direction toward theoretical efficiency in perovskite solar cells.ACS Photon.5, 2970–2977 (2018)..
Binek, A., Hanusch, F. C., Docampo, P.&Bein, T. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide.J. Phys. Chem. Lett.6, 1249–1253, (2015)..
LaMer, V. K.&Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols.J. Am. Chem. Soc.72, 4847–4854 (1950)..
Ocaña, M., Rodriguez-Clemente, R.&Serna, C. J. Uniform colloidal particles in solution: formation mechanisms.Adv. Mater.7, 212–216 (1995)..
Chao, L. et al. Solvent engineering of the precursor solution toward large-area production of perovskite solar cells.Adv. Mater.33, 2005410 (2021)..
Kim, G. -H.&Kim, D. S. An intermediate phase stability for high performance of perovskite solar cells.Matter4, 3377–3378 (2021)..
Ge, Y. et al. Intermediate phase engineering with 2,2-Azodi(2-Methylbutyronitrile) for efficient and stable perovskite solar cells.Adv. Mater.35, 2210186 (2023)..
Yang, S. et al. A key 2D intermediate phase for stable high-efficiency CsPbI2Br perovskite solar cells.Adv. Energy Mater.12, 2103019 (2022)..
Li, B., Binks, D., Cao, G.&Tian, J. Engineering halide perovskite crystals through precursor chemistry.Small15, 1903613 (2019)..
Lee, J. -W., Kim, H. -S.&Park, N. -G. Lewis acid–base adduct approach for high efficiency perovskite solar cells.Accounts Chem. Res.49, 311–319 (2016)..
Bai, Y. et al. A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability.Nano Energy34, 58–68 (2017)..
McMeekin, D. P. et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells.Nat. Mater.22, 73–83 (2023)..
Kim, J. et al. Unveiling the relationship between the perovskite precursor solution and the resulting device performance.J. Am. Chem. Soc.142, 6251–6260 (2020)..
McMeekin, D. P. et al. Crystallization kinetics and morphology control of formamidinium–cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution.Adv. Mater.29, 1607039 (2017)..
Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells.Nat. Mater.13, 897–903 (2014)..
Huang, F. et al. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells.Nano Energy10, 10–18 (2014)..
Gotanda, T., Mori, S., Matsui, A.&Oooka, H. Effects of gas blowing condition on formation of perovskite layer on organic scaffolds.Chem. Lett.45, 822–824 (2016)..
Chiang, C. -H.&Wu, C. -G. A method for the preparation of highly oriented MAPbI3 crystallites for high-efficiency perovskite solar cells to achieve an 86% fill factor.ACS Nano12, 10355–10364 (2018)..
Chen, J.&Park, N. -G. Causes and solutions of recombination in perovskite solar cells.Adv. Mater.31, 1803019 (2019)..
Yin, W. -J., Shi, T.&Yan, Y. Unusual defect physics in CH3NH3PbI3perovskite solar cell absorber.Appl. Phys. Lett.104, 063903 (2014)..
Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites.ACS Nano8, 9815–9821 (2014)..
Buin, A. et al. Materials processing routes to trap-free halide perovskites.Nano Lett.14, 6281–6286 (2014)..
Buin, A., Comin, R., Xu, J., Ip, A. H.&Sargent, E. H. Halide-dependent electronic structure of organolead perovskite materials.Chem. Mater.27, 4405–4412 (2015)..
Wang, S. et al. Lewis acid/base approach for efficacious defect passivation in perovskite solar cells.J. Mater. Chem. A8, 12201–12225 (2020)..
Zhang, F. et al. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells.Energy Environ. Sci.11, 3480–3490 (2018)..
Yang, Z. et al. Multifunctional phosphorus-containing Lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells.Adv. Funct. Mater.30, 1910710 (2020)..
Shao, Y., Xiao, Z., Bi, C., Yuan, Y.&Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3planar heterojunction solar cells.Nat. Commun.5, 5784 (2014)..
Li, Z. et al. Extrinsic ion migration in perovskite solar cells.Energy Environ. Sci.10, 1234–1242 (2017)..
Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells.Nano Lett.14, 3247–3254 (2014)..
Li, C. et al. Emerging alkali metal ion (Li+, Na+, K+and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects.J. Mater. Chem. A7, 24150–24163 (2019)..
Zhao, W., Yao, Z., Yu, F., Yang, D.&Liu, S. Alkali metal doping for improved CH3NH3PbI3perovskite solar cells.Adv. Sci.5, 1700131 (2018)..
Kausar, A. et al. Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells.Chem. Soc. Rev.50, 2696–2736 (2021)..
Turren-Cruz, S. -H. et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells.Energy Environ. Sci.11, 78–86 (2018)..
Meazza, L. et al. Halogen-bonding-triggered supramolecular gel formation.Nat. Chem.5, 42–47 (2013)..
Gong, X. et al. Strong electron acceptor of a fluorine-containing group leads to high performance of perovskite solar cells.ACS Appl. Mater. Interfaces13, 41149–41158 (2021)..
Liu, K. et al. Fullerene derivative anchored SnO2for high-performance perovskite solar cells.Energy Environ. Sci.11, 3463–3471 (2018)..
Xu, J. et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes.Nat. Commun.6, 7081 (2015)..
Wei, J. et al. Mechanisms and suppression of photoinduced degradation in perovskite solar cells.Adv. Energy Mater.11, 2002326 (2021)..
Li, Y. et al. Passivation of defects in perovskite solar cell: from a chemistry point of view.Nano Energy77, 105237 (2020)..
Lee, J. -W. et al. A bifunctional Lewis base additive for microscopic homogeneity in perovskite solar cells.Chem3, 290–302 (2017)..
Hou, J. et al. Ethylenediamine chlorides additive assisting formation of high-qualityformamidinium-caesium perovskite film with low trap density for efficient solar cells.J. Power Sources449, 227484 (2020)..
Lee, S. -H. et al. Acid dissociation constant: a criterion for selecting passivation agents in perovskite solar cells.ACS Energy Lett.6, 1612–1621 (2021)..
Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells.Nat. Commun.7, 13422 (2016)..
Afroz, M. A., Garai, R., Gupta, R. K.&Iyer, P. K. Additive-assisted defect passivation for minimization of open-circuit voltage loss and improved perovskite solar cell performance.ACS Appl. Energy Mater.4, 10468–10476 (2021)..
Jiang, X. et al. Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells.Angew. Chem. Int. Ed.62, e202302462 (2023)..
Zhang, H. et al. Efficient and stable chemical passivation on perovskite surface via bidentate anchoring.Adv. Energy Mater.9, 1803573 (2019)..
Zhou, Z., Pang, S., Liu, Z., Xu, H.&Cui, G. Interface engineering for high-performance perovskite hybrid solar cells.J. Mater. Chem. A3, 19205–19217 (2015)..
Minemoto, T.&Murata, M. Theoretical analysis on effect of band offsets in perovskite solar cells.Sol. Energy Mat. Sol. Cells133, 8–14 (2015)..
Yajima, T. et al. Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces.Nat. Commun.6, 6759 (2015)..
Xie, Y. et al. Facile RbBr interface modification improves perovskite solar cell efficiency.Mater. Today Chem.14, 100179 (2019)..
Zuo, L. et al. Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells.Nano Lett.17, 269–275 (2017)..
Duan, J. et al. Effect of side-group-regulated dipolar passivating molecules on CsPbBr3perovskite solar cells.ACS Energy Lett.6, 2336–2342 (2021)..
Zhao, B. et al. Introduction of multifunctional triphenylamino derivatives at the perovskite/HTL interface to promote efficiency and stability of perovskite solar cells.ACS Appl. Mater. Interfaces12, 9300–9306 (2020)..
Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction.Nature620, 994–1000 (2023)..
Vos, A. D. Detailed balance limit of the efficiency of tandem solar cells.J. Phys. D Appl. Phys.13, 839 (1980)..
Liu, X. et al. Over 28% efficiency perovskite/Cu(InGa)Se2tandem solar cells: highly efficient sub-cells and their bandgap matching.Energy Environ. Sci.16, 5029–5046 (2023)..
Wang, X. et al. Highly efficient perovskite/organic tandem solar cells enabled by mixed-cation surface modulation.Adv. Mater.35, 2305946 (2023)..
Yu, W. et al. Recent advances on interface engineering of perovskite solar cells.Nano Res.15, 85–103 (2022)..
Wang, X. et al. Reducing optical reflection loss for perovskite solar cells via printable mesoporous SiO2antireflection coatings.Adv. Funct. Mater.32, 2203872 (2022)..
Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells.Science381, 59–63 (2023)..
Tan, X. et al. Stabilizing CsPbI3 perovskite for photovoltaic applications.Matter6, 691–727 (2023)..
Goldschmidt, V. M. Die Gesetze der krystallochemie.Naturwissenschaften14, 477–485 (1926)..
Green, M. A., Ho-Baillie, A.&Snaith, H. J. The emergence of perovskite solar cells.Nat. Photon.8, 506–514 (2014)..
Li, C. et al. Formability of ABX3(X = F, Cl, Br, I) halide perovskites.Acta Crystallogr. B64, 702–707 (2008)..
Chatterjee, S.&Pal, A. J. Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells.J. Mater. Chem. A6, 3793–3823 (2018)..
Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys.Chem. Mater.28, 284–292 (2016)..
Zhang, Y., Grancini, G., Feng, Y., Asiri, A. M.&Nazeeruddin, M. K. Optimization of stable quasi-cubic FAxMA1–xPbI3perovskite structure for solar cells with efficiency beyond 20%.ACS Energy Lett.2, 802–806 (2017)..
Sun, Q.&Yin, W. -J. Thermodynamic stability trend of cubic perovskites.J. Am. Chem. Soc.139, 14905–14908 (2017)..
Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides.Sci. Adv.5, eaav0693 (2019)..
Yang, J., Siempelkamp, B. D., Liu, D.&Kelly, T. L. Investigation of CH3NH3PbI3degradation rates and mechanisms in controlled humidity environments using in situ techniques.ACS Nano9, 1955–1963, (2015)..
Christians, J. A., Miranda Herrera, P. A.&Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3perovskite upon controlled exposure to humidified air.J. Am. Chem. Soc.137, 1530–1538, (2015)..
Yun, J. S. et al. Humidity-induced degradation via grain boundaries of HC(NH2)2PbI3planar perovskite solar cells.Adv. Funct. Mater.28, 1705363 (2018)..
Niu, G. et al. Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells.J. Mater. Chem. A2, 705–710 (2014)..
Yao, W. et al. In situ microscopic observation of humidity-induced degradation inall-inorganic perovskite films.ACS Appl. Energy Mater.5, 8092–8102 (2022)..
Zheng, H. et al. High-performance mixed-dimensional perovskite solar cells with enhanced stability against humidity, heat and UV light.J. Mater. Chem. A6, 20233–20241 (2018)..
Li, W. et al. Efficient and stable mesoscopic perovskite solar cell in high humidity by localized Dion-Jacobson 2D-3D heterostructures.Nano Energy91, 106666 (2022)..
Yang, J. et al. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide.Adv. Energy Mater.9, 1900198 (2019)..
Zhan, Y., Peng, J., Cao, C.&Cheng, Q. A biomineralization-inspired strategy of self-encapsulation for perovskite solar cells.Nano Energy101, 107575 (2022)..
Meng, K. et al. Humidity-induced defect-healing of formamidinium-based perovskite films.Small17, 2104165 (2021)..
Habisreutinger, S. N. et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells.Nano Lett.14, 5561–5568 (2014)..
Kim, H. -S. et al. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.Sci. Rep.2, 591 (2012)..
Pearson, A. J. et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClxperovskite solar cells: kinetics and mechanisms.Adv. Energy Mater.6, 1600014 (2016)..
Zhang, L.&Sit, P. H. L. Ab initio study of the role of oxygen and excess electrons in the degradation of CH3NH3PbI3.J. Mater. Chem. A5, 9042–9049 (2017)..
Zhuang, J., Wang, J.&Yan, F. Review on chemical stability of lead halide perovskite solar cells.Nano-Micro Lett.15, 84 (2023)..
Ouyang, Y. et al. Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection.J. Mater. Chem. A7, 2275–2282 (2019)..
You, J. et al. Moisture assisted perovskite film growth for high performance solar cells.Appl. Phys. Lett.105, 183902 (2014)..
Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2with meso-superstructured organometal tri-halide perovskite solar cells.Nat. Commun.4, 2885 (2013)..
Shao, S. et al. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency.Adv. Energy Mater.8, 1702019 (2018)..
Han, H. Oxygen makes better inorganic perovskite solar cells.Sci. Bull.65, 335–336 (2020)..
Brenes, R. et al. Metal halide perovskite polycrystalline films exhibiting properties of single crystals.Joule1, 155–167 (2017)..
Fang, H. -H. et al. Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases.Sci. Adv.2, e1600534 (2016)..
Liu, S. -C. et al. Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells.J. Am. Chem. Soc.141, 18075–18082 (2019)..
Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.Chem. Sci.6, 613–617 (2015)..
Tsai, H. et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells.Science360, 67–70 (2018)..
deQuilettes, D. W. et al. Photo-induced halide redistribution in organic–inorganic perovskite films.Nat. Commun.7, 11683 (2016)..
Mosconi, E., Meggiolaro, D., Snaith, H. J., Stranks, S. D.&De Angelis, F. Light-induced annihilation of Frenkel defects in organo-lead halide perovskites.Energy Environ. Sci.9, 3180–3187 (2016)..
Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells.Energy Environ. Sci.10, 604–613 (2017)..
Abate, A. et al. Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells.Energy Environ. Sci.8, 2946–2953 (2015)..
Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.Energy Environ. Sci.9, 1989–1997 (2016)..
Nickel, N. H., Lang, F., Brus, V. V., Shargaieva, O.&Rappich, J. Unraveling the Light-Induced Degradation Mechanisms of CH3NH3PbI3Perovskite Films.Adv. Electron. Mater.3, 1700158 (2017)..
Lepage, M. L. et al. A broadly applicable cross-linker for aliphatic polymers containing C–H bonds.Science366, 875–878 (2019)..
Liu, K. et al. Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells.Joule7, 1033–1050 (2023)..
Mei, A. et al. Stabilizing perovskite solar cells to IEC61215: 2016 standards with over 9,000-h operational tracking.Joule4, 2646–2660 (2020)..
Koehl, M., Heck, M., Wiesmeier, S.&Wirth, J. Modeling of the nominal operating cell temperature based on outdoor weathering.Sol. Energy Mater. Sol. Cells95, 1638–1646 (2011)..
Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite.Adv. Energy Mater.5, 1500477 (2015)..
Juarez-Perez, E. J., Hawash, Z., Raga, S. R., Ono, L. K.&Qi, Y. Thermal degradation of CH3NH3PbI3perovskite into NH3and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis.Energy Environ. Sci.9, 3406–3410 (2016)..
Yang, J. -H., Yin, W. -J., Park, J. -S.&Wei, S. -H. Fast self-diffusion of ions in CH3NH3PbI3: the interstiticaly mechanism versus vacancy-assisted mechanism.J. Mater. Chem. A4, 13105–13112 (2016)..
Zhu, C., Gao, J., Chen, T., Guo, X.&Yang, Y. Intrinsic thermal stability of inverted perovskite solar cells based on electrochemical deposited PEDOT.J. Energy Chem.83, 445–453 (2023)..
Aharon, S., Cohen, B. E.&Etgar, L. Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell.J. Phys. Chem. C118, 17160–17165 (2014)..
Wang, R. et al. Caffeine improves the performance and thermal stability of perovskite solar cells.Joule3, 1464–1477 (2019)..
Cheng, L. et al. Highly thermostable and efficient formamidinium-based low-dimensional perovskite solar cells.Angew. Chem. Int. Ed.60, 856–864 (2021)..
Fürer, S. O. et al. Naphthalene-imide self-assembled monolayers as a surface modification of ITO for improved thermal stability of perovskite solar cells.ACS Appl. Energy Mater.6, 667–677 (2023)..
Lao, Y. et al. Efficient perovskite solar cells with enhanced thermal stability by sulfide treatment.ACS Appl. Mater. Int.14, 27427–27434 (2022)..
Brinkmann, K. O. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells.Nat. Commun.8, 13938 (2017)..
Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers.Science350, 944–948 (2015)..
Wu, Y. et al. Thermally stable MAPbI3perovskite solar cells with efficiency of 19.19% and area over 1 cm2achieved by additive engineering.Adv. Mater.29, 1701073 (2017)..
Kim, S. et al. Relationship between ion migration and interfacial degradation of CH3NH3PbI3perovskite solar cells under thermal conditions.Sci. Rep.7, 1200 (2017)..
Seo, J. -Y. et al. Novel p-dopant toward highly efficient and stable perovskite solar cells.Energy Environ. Sci.11, 2985–2992 (2018)..
Liu, X. et al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive.Nat. Photon.17, 96–105 (2023)..
Choi, K. et al. Thermally stable, planar hybrid perovskite solar cells with high efficiency.Energy Environ. Sci.11, 3238–3247 (2018)..
Choi, K. et al. Heat dissipation effects on the stability of planar perovskite solar cells.Energy Environ. Sci.13, 5059–5067 (2020)..
Kim, S. -G. et al. Capturing mobile lithium ions in a molecular hole transporter enhances the thermal stability of perovskite solar cells.Adv. Mater.33, 2007431 (2021)..
Daškevičiū tė, Š. et al. Nonspiro, fluorene-based, amorphous hole transporting materials for efficient and stable perovskite solar cells.Adv. Sci.5, 1700811 (2018)..
Liu, Z., Sun, B., Shi, T., Tang, Z.&Liao, G. Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS.J. Mater. Chem. A4, 10700–10709 (2016)..
Ma, S. et al. 1000 h operational lifetime perovskite solar cells by ambient melting encapsulation.Adv. Energy Mater.10, 1902472 (2020)..
Lee, Y. I. et al. A low-temperature thin-film encapsulation for enhanced stability of a highly efficient perovskite solar cell.Adv. Energy Mater.8, 1701928 (2018)..
Yuan, Y. et al. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method.Nat. Commun.5, 3005 (2014)..
Rong, Y. et al. Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques.J. Phys. Chem. Lett.9, 2707–2713 (2018)..
Xiao, Y. et al. Large-area blade-coated solar cells: advances and perspectives.Adv. Energy Mater.11, 2100378 (2021)..
Zhong, J. -X., Wu, W. -Q., Ding, L.&Kuang, D. -B. Blade-coating perovskite films with diverse compositions for efficient photovoltaics.Energy Environ. Mater.4, 277–283 (2021)..
Feng, W. et al. Near-stoichiometric and homogenized perovskite films for solar cells with minimized performance variation.Angew. Chem. Int. Ed.62, e202300265 (2023)..
Razza, S. et al. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2blade coating deposition process.J. Power Sources277, 286–291 (2015)..
Tait, J. G. et al. Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating.J. Mater. Chem. A4, 3792–3797 (2016)..
Chou, L. -H., Chan, J. M. W.&Liu, C. -L. Progress in spray coated perovskite films for solar cell applications.Solar RRL6, 2101035 (2022)..
Cassella, E. J. et al. Gas-assisted spray coating of perovskite solar cells incorporating sprayed self-assembled monolayers.Adv. Sci.9, 2104848 (2022)..
Heo, J. H. et al. Efficient and stable graded CsPbI3−xBrxperovskite solar cells and submodules by orthogonal processable spray coating.Joule5, 481–494 (2021)..
Bu, T. et al. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules.Science372, 1327–1332 (2021)..
Li, J. et al. 20.8% slot-die coated MAPbI3perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks.Adv. Energy Mater.11, 2003460 (2021)..
Hwang, K. et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells.Adv. Mater.27, 1241–1247 (2015)..
Yang, Z. et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module.Sci. Adv.7, eabg3749 (2021)..
Le, T. S. et al. All-slot-die-coated inverted perovskite solar cells in ambient conditions with chlorine additives.Solar RRL6, 2100807 (2022)..
Whitaker, J. B. et al. Scalable slot-die coating of high performance perovskite solar cells.Sustain. Energy Fuels2, 2442–2449 (2018)..
Du, M. et al. Surface redox engineering of vacuum-deposited NiOxfor top-performance perovskite solar cells and modules.Joule6, 1931–1943 (2022)..
Wu, Z. et al. Natural amino acid enables scalable fabrication of high-performance flexible perovskite solar cells and modules with areas over 300 cm2.Small Methods6, 2200669 (2022)..
Basaran, O. A., Gao, H.&Bhat, P. P. Nonstandard Inkjets.Annu. Rev. Fluid Mech.45, 85–113 (2013)..
Karunakaran, S. K. et al. Recent progress in inkjet-printed solar cells.J. Mater. Chem. A7, 13873–13902 (2019)..
Abzieher, T. et al. Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics.Adv. Energy Mater.9, 1802995 (2019)..
Green, M. A. et al. Solar cell efficiency tables (version 56).Prog. Photovoltaics28, 629–638 (2020)..
Chen, C. et al. Perovskite solar cells based on screen-printed thin films.Nature612, 266–271 (2022)..
De Rossi, F. et al. All printable perovskite solar modules with 198 cm2active area and over 6% efficiency.Adv. Mater. Technol.3, 1800156 (2018)..
Chalkias, D. A., Mourtzikou, A., Katsagounos, G., Kalarakis, A. N.&Stathatos, E. Development of greener and stable inkjet-printable perovskite precursor inks for all-printed annealing-free perovskite solar mini-modules manufacturing.Small Methods7, 2300664 (2023)..
Lin, H. et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers.Nat. Energy8, 789–799 (2023)..
Mei, A. et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability.Science345, 295–298 (2014)..
Gao, P., Graetzel, M.&Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications.Energy Environ. Sci.7, 2448–2463 (2014)..
McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells.Science351, 151–155 (2016)..
Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with>29% efficiency by enhanced hole extraction.Science370, 1300–1309 (2020)..
Li, Y., Xu, G., Cui, C.&Li, Y. Flexible and semitransparent organic solar cells.Adv. Energy Mater.8, 1701791 (2018)..
Lin, J. et al. Thermochromic halide perovskite solar cells.Nat. Mater.17, 261–267 (2018)..
Xue, Q., Xia, R., Brabec, C. J.&Yip, H. -L. Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications.Energy Environ. Sci.11, 1688–1709 (2018)..
Cheng, R. et al. Tailoring triple-anion perovskite material for indoor light harvesting with restrained halide segregation and record high efficiency beyond 36%.Adv. Energy Mater.9, 19011980 (2019)..
Mathews, I., Kantareddy, S. N., Buonassisi, T.&Peters, I. M. Technology and market perspective for indoor photovoltaic cells.Joule3, 1415–1426 (2019)..
Jacobsson, T. J. et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells.Energy Environ. Sci.9, 1706–1724 (2016)..
Cardinaletti, I. et al. Organic and perovskite solar cells for space applications.Sol. Energy Mat. Sol. Cell182, 121–127 (2018)..
Tu, Y. et al. Perovskite solar cells for space applications: progress and challenges.Adv. Mater.33, 2006545 (2021)..
Xu, J., Chen, Y.&Dai, L. Efficiently photo-charging lithium-ion battery by perovskite solar cell.Nat. Commun.6, 8103 (2015)..
Xu, X. et al. A power pack based on organometallic perovskite solar cell and supercapacitor.ACS Nano9, 1782–1787 (2015)..
Li, C. et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors.Nano Energy60, 247–256 (2019)..
Hu, C. et al. Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water.Nano Energy41, 367–376 (2017)..
Poli, I. et al. Graphite-protected CsPbBr3perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water.Nat. Commun.10, 2097 (2019)..
Zhou, Q. et al. Mn2+and Mn4+red phosphors: synthesis, luminescence and applications in WLEDs. A review.J. Mater. Chem. C6, 2652–2671 (2018)..
You, S. et al. All-inorganic perovskite/graphitic carbon nitride composites for CO2photoreduction into C1 compounds under low concentrations of CO2.Dalton Trans.48, 14115–14121 (2019)..
Chen, P., Ong, W. -J., Shi, Z., Zhao, X.&Li, N. Pb-based halide perovskites: recent advances in photo(electro)catalytic applications and looking beyond.Adv. Funct. Mater.30, 1909667 (2020)..
Yang, C., Liu, D., Bates, M., Barr, M. C.&Lunt, R. R. How to accurately report transparent solar cells.Joule3, 1803–1809 (2019)..
Jeong, M. J. et al. Oxide/halide/oxide architecture for high performance semi-transparent perovskite solar cells.Adv. Energy Mater.12, 2200661 (2022)..
Polyzoidis, C., Rogdakis, K.&Kymakis, E. Indoor perovskite photovoltaics for the internet of things-challenges and opportunities toward market uptake.Adv. Energy Mater.11, 2101854 (2021)..
Zhang, C. et al. Br vacancy defects healed perovskite indoor photovoltaic modules with certified power conversion efficiency exceeding 36%.Adv. Sci.9, 2204138 (2022)..
min, J. et al. An autonomous wearable biosensor powered by a perovskite solar cell.Nat. Electron.6, 630–641 (2023)..
Chen, Z. etal. Trap state induced recombination effects on indoor organic photovoltaic cells.ACS Energy Lett.6, 3203–3211 (2021)..
Reb, L. K. et al. Perovskite and organic solar cells on a rocket flight.Joule4, 1880–1892 (2020)..
Kirmani, A. R. et al. Metal oxide barrier layers for terrestrial and space perovskite photovoltaics.Nat. Energy8, 191–202 (2023)..
McMillon-Brown, L., Luther, J. M.&Peshek, T. J. What would it take to manufacture perovskite solar cells in space?ACS Energy Lett.7, 1040–1042 (2022)..
Yang, J. et al. Unraveling photostability of mixed cation perovskite films in extreme environment.Adv. Opt. Mater.6, 1800262 (2018)..
Xu, X. et al. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells.Nano Energy34, 392–398 (2017)..
InStandard: Qualification and Quality Requirements for Space Solar Cells (AIAA S-111A-2014) AIAA Standards(American Institute of Aeronautics and Astronautics, Inc., 2014).
Li, T. -T. et al. Photo-rechargeable all-solid-state lithium−sulfur batteries based on perovskite indoor photovoltaic modules.Chem. Eng. J.455, 140684 (2023)..
Liu, Z. et al. Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage.ACS Appl. Mater. Interfaces9, 22361–22368 (2017)..
Yang, G. et al. Perovskite solar cell powered integrated fuel conversion and energy storage devices.Adv. Mater.35, 2300383 (2023)..
Song, Z. et al. All-perovskite tandem photoelectrodes for unassisted solar hydrogen production.ACS Energy Lett.8, 2611–2619 (2023)..
Fehr, A. M. K. et al. Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%.Nat. Commun.14, 3797 (2023)..
Schreier, M. et al. Efficient photosynthesis of carbon monoxide from CO2using perovskite photovoltaics.Nat. Commun.6, 7326 (2015)..
Huan, T. N. et al. Low-cost high-efficiency system for solar-driven conversion of CO2to hydrocarbons.Proc. Natl Acad. Sci. USA116, 9735–9740 (2019)..
Esiner, S., Wang, J.&Janssen, R. A. J. Light-driven electrochemical carbon dioxide reduction to carbon monoxide and methane using perovskite photovoltaics.Cell Rep. Phys. Sci.1, 100058 (2020)..
Ke, W.&Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells.Nat. Commun.10, 965 (2019)..
Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites.Nat. Commun.10, 2560 (2019)..
Xiao, Z., Song, Z.&Yan, Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives.Adv. Mater.31, 1803792 (2019)..
Awais, M., Kirsch, R. L., Yeddu, V.&Saidaminov, M. I. Tin halide perovskites going forward: frost diagrams offer hints.ACS Mater. Lett.3, 299–307 (2021)..
Heo, Y. J. et al. Enhancing performance and stability of tin halide perovskite light emitting diodes via coordination engineering of Lewis acid–base adducts.Adv. Funct. Mater.31, 2106974 (2021)..
Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G.&Cahen, D. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells.J. Phys. Chem. Lett.6, 1543–1547 (2015)..
Li, J. et al. Biological impact of lead from halide perovskites reveals the risk of introducinga safe threshold.Nat. Commun.11, 310 (2020)..
Chen, C. -H., Cheng, S. -N., Cheng, L., Wang, Z. -K.&Liao, L. -S. Toxicity, leakage, and recycling of lead in perovskite photovoltaics.Adv. Energy Mater.13, 2204144 (2023)..
European Commission.Restriction of hazardous substances in electrical and electronic equipment (RoHS).https://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_enhttps://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_en(European Commission, 2017)..
Technology Standards Department of State Bureau of Environmental Protection of China.Environmental quality standard for soils GB 15618-1995.https://www-chinesestandard-net-s.lib.hust.edu.cn:443/PDF.aspx/GB15618-1995https://www-chinesestandard-net-s.lib.hust.edu.cn:443/PDF.aspx/GB15618-1995(Technology Standards Department of State Bureau of Environmental Protection of China, 1995)..
Babayigit, A. et al. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio.Sci. Rep.6, 18721 (2016)..
Zeng, X. et al. Alterations of the gut microbiota and metabolomics in children with e-waste lead exposure.J. Hazard. Mater.434, 128842 (2022)..
Babayigit, A., Ethirajan, A., Muller, M.&Conings, B. Toxicity of organometal halide perovskite solar cells.Nat. Mater.15, 247–251, (2016)..
Freire, C. et al. Adipose tissue concentrations of arsenic, nickel, lead, tin, and titanium in adults from GraMo cohort in Southern Spain: an exploratory study.Sci. Total Environ.719, 137458 (2020)..
Lukačínová, A., Rácz, O., Lovásová, E.&Ništiar, F. Effect of lifetime low dose exposure to heavy metals on selected serum proteins of Wistar rats during three subsequent generations.Ecotoxic. Environ. Safe.74, 1747–1755 (2011)..
Czubowicz, K., Jęśko, H., Wencel, P., Lukiw, W. J.&Strosznajder, R. P. The role of ceramide and sphingosine-1-phosphate in Alzheimer's disease and other neurodegenerative disorders.Mol. Neurobiol.56, 5436–5455 (2019)..
Mabrouk, A. Thymoquinone attenuates lead-induced nephropathy in rats.J. Biochem. Mol. Toxicol.33, e22238 (2019)..
Bae, S. -Y. et al. Hazard potential of perovskite solar cell technology for potential implementation of "safe-by-design" approach.Sci. Rep.9, 4242 (2019)..
Ponti, C. et al. Environmental lead exposure from halide perovskites in solar cells.Trend. Ecol. Evol.37, 281–283 (2022)..
Li, J. et al. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization.J. Power Sources485, 229313 (2021)..
Jiang, Y. et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation.Nat. Energy4, 585–593 (2019)..
Li, X. et al. On-device lead sequestration for perovskite solar cells.Nature578, 555–558 (2020)..
Xiao, X. et al. Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules.Sci. Adv.7, eabi8249 (2021)..
Li, Z. et al. Sulfonated graphene aerogels enable safe-to-use flexible perovskite solar modules.Adv. Energy Mater.12, 2103236 (2022)..
Li, Z. et al. An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics.Nano Energy93, 106853 (2022)..
Huang, Z. et al. Water-resistant and flexible perovskite solar cells via a glued interfacial layer.Adv. Funct. Mater.29, 1902629 (2019)..
Moody, N. et al. Assessing the regulatory requirements of lead-based perovskite photovoltaics.Joule4, 970–974 (2020)..
Zhang, J. et al. Thermally crosslinked F-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules.Angew. Chem. Int. Ed.62, e202305221 (2023)..
Tian, C. et al. In situ polymerizing internal encapsulation strategy enables stable perovskite solar cells toward lead leakage suppression.Adv. Funct. Mater.33, 2302270 (2023)..
Zhang, Y. et al. Dual function of l-phenylalanine as a modification layer toward enhanced device performance and mitigated lead leakage in perovskite solar cells.Solar RRL7, 2200806 (2023)..
Pei, Y. et al. Boosting near-infrared luminescence of lanthanide in Cs2AgBiCl6double perovskites via breakdown of the local site symmetry.Angew. Chem. Int. Ed.61, e202205276 (2022)..
Zhang, H. et al. Design of superhydrophobic surfaces for stable perovskite solar cells with reducing lead leakage.Adv. Energy Mater.11, 2102281 (2021)..
He, Z. et al. Simultaneous chemical crosslinking of SnO2and perovskite for high-performance planar perovskite solar cells with minimized lead leakage.Solar RRL6, 2200567 (2022)..
Wu, S. et al. 2D metal–organic framework for stable perovskite solar cells with minimized lead leakage.Nat. Nanotechnol.15, 934–940 (2020)..
Chen, S. et al. Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins.Nat. Energy5, 1003–1011 (2020)..
Chen, S. et al. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells.Nat. Sustain.4, 636–643 (2021)..
Hu, Y. et al. Dual functions of performance improvement and lead leakage mitigation of perovskite solar cells enabled by phenylbenzimidazole sulfonic acid.Small Methods6, 2101257 (2022)..
Meng, X. et al. A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage.Adv. Funct. Mater.31, 2106460 (2021)..
Valastro, S. et al. Preventing lead leakage in perovskite solar cells with a sustainable titanium dioxide sponge.Nat. Sustain.6, 974–983 (2023)..
Luo, H. et al. Bioinspired "cage traps" for closed-loop lead management of perovskite solar cells under real-world contamination assessment.Nat. Commun.14, 4730 (2023)..
Wei, X. et al. Avoiding structural collapse to reduce lead leakage in perovskite photovoltaics.Angew. Chem. Int. Ed.61, e202204314 (2022)..
Tian, T. et al. Large-area waterproof and durable perovskite luminescent textiles.Nat. Commun.14, 234 (2023)..
Niu, B. et al. Mitigating the lead leakage of high-performance perovskite solar cells via in situ polymerized networks.ACS Energy Lett.6, 3443–3449 (2021)..
Yang, M. et al. Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex.Nat. Sustain.6, 1455–1464 (2023)..
Liang, Y. et al. Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells.Adv. Funct. Mater.32, 2110139 (2022)..
Horváth, E. et al. Fighting health hazards in lead halide perovskite optoelectronic devices with transparent phosphate salts.ACS Appl. Mater. Interfaces13, 33995–34002 (2021)..
Augustine, B., Remes, K., Lorite, G. S., Varghese, J.&Fabritius, T. Recycling perovskite solar cells through inexpensive quality recovery and reuse of patterned indium tin oxide and substrates from expired devices by single solvent treatment.Sol. Energy Mat. Sol. Cells194, 74–82 (2019)..
Huang, L. et al. Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices.Sol. Energy Mat. Sol. Cells152, 118–124 (2016)..
Chen, B. et al. Recycling lead and transparent conductors from perovskite solar modules.Nat. Commun.12, 5859 (2021)..
Li, M. -H. et al. Robust and recyclable substrate template with an ultrathin nanoporous counter electrode for organic-hole-conductor-free monolithic perovskite solar cells.ACS Appl. Mater. Interfaces9, 41845–41854 (2017)..
Ku, Z., Xia, X., Shen, H., Tiep, N. H.&Fan, H. J. A mesoporous nickel counter electrode for printable and reusable perovskite solar cells.Nanoscale7, 13363–13368 (2015)..
Yang, F. et al. Recycled utilization of a nanoporous Au electrode for reduced fabrication cost of perovskite solar cells.Adv. Sci.7, 1902474 (2020)..
Binek, A. et al. Recycling perovskite solar cells to avoid lead waste.ACS Appl. Mater. Interfaces8, 12881–12886 (2016)..
Zhang, S. et al. Cyclic utilization of lead in carbon-based perovskite solar cells.ACS Sustain. Chem. Eng.6, 7558–7564 (2018)..
Park, S. Y. et al. Sustainable lead management in halide perovskite solar cells.Nat. Sustain.3, 1044–1051 (2020)..
Tian, X., Roose, B., Stranks, S. D.&You, F. Periodic module rejuvenation provides early market entry for circular all-perovskite tandem photovoltaic technologies.Energy Environ. Sci.16, 5551–5567 (2023)..
Tan, L. et al. Combined vacuum evaporation and solution process for high-efficiency large-area perovskite solar cells with exceptional reproducibility.Adv. Mater.35, 2205027 (2023)..
Vidal, R. et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells.Nat. Sustain.4, 277–285 (2021)..
Gardner, K. L. et al. Nonhazardous solvent systems for processing perovskite photovoltaics.Adv. Energy Mater.6, 1600386 (2016)..
Worsley, C. et al. γ-valerolactone: a nontoxic green solvent for highly stable printed mesoporous perovskite solar cells.Energy Technol.9, 2100312 (2021)..
Miao, Y. et al. Green solvent enabled scalable processing of perovskite solar cells with high efficiency.Nat. Sustain.6, 1465–1473 (2023)..
Wu, X. et al. Green-solvent-processed formamidinium-based perovskite solar cells with uniform grain growth and strengthened interfacial contact via a nanostructured tin oxide layer.Mater. Horizons10, 122–135 (2023)..
Cho, N. et al. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films.Nat. Commun.7, 13407 (2016)..
Seo, J. -Y. et al. Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency.Adv. Energy Mater.6, 1600767 (2016)..
Hui, W. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity.Science371, 1359–1364 (2021)..
Berry, J. J. et al. Perovskite photovoltaics: the path to a printable Terawatt-scale technology.ACS Energy Lett.2, 2540–2544 (2017)..
Cao, X. et al. Achieving environment-friendly productionof CsPbBr3films for efficient solar cells via precursor engineering.Green Chem.23, 2104–2112 (2021)..
Zhai, P. et al. Performance-limiting formation kinetics in green water-processed perovskite solar cells.Energy Environ. Sci.16, 3014–3024 (2023)..
Yun, H. -S. et al. Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers.Nat. Energy7, 828–834 (2022)..
Bu, T. et al. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells.Adv. Energy Mater.7, 1700576 (2017)..
Wang, Z. et al. Green antisolvent-mediators stabilize perovskites for efficient NiOx-based inverted solar cells with Voc approaching 1.2 V.Chem. Eng. J.457, 141204 (2023)..
Su, Y. et al. Environmentally friendly anti-solvent engineering for high-efficiency tin-based perovskite solar cells.Energy Environ. Sci.16, 2177–2186 (2023)..
Zhang, Z. et al. Green-antisolvent-regulated distribution of p-type self-doping enables tin perovskite solar cells with an efficiency of over 14%.Energy Environ. Sci.16, 3430–3440 (2023)..
Cao, X. et al. All green solvent engineering of organic–inorganic hybrid perovskite layer for high-performance solar cells.Chem. Eng. J.437, 135458 (2022)..
Kim, Y. Y. et al. Rationally designed eco-friendly solvent system for high-performance, large-area perovskite solar cells and modules.Adv. Sci.10, 2300728 (2023)..
Salah, M. B. H., Mercier, N., Dabos-Seignon, S.&Botta, C. Solvent-free preparation and moderate congruent melting temperature of layered lead iodide perovskites for thin-film formation.Angew. Chem. Int. Ed.61, e202206665 (2022)..
Li, H. et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency.Sci. Adv.8, eabo7422 (2022)..
Poll, C. G. et al. Electrochemical recycling of lead from hybrid organic–inorganic perovskites using deep eutectic solvents.Green Chem.18, 2946–2955 (2016)..
Xu, J. et al. In situ recycle of PbI2as a step towards sustainable perovskite solar cells.Prog. Photovoltaics25, 1022–1033 (2017)..
Qiu, L. et al. Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2approaching 10% efficiency.J. Mater. Chem. A7, 6920–6929 (2019)..
Li, N. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility.Science373, 561–567 (2021)..
Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells.Science377, 307–310 (2022)..
Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells.Nature611, 278–283 (2022)..
Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells.Science377, 1425–1430 (2022)..
Bai, Y. et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells.Science378, 747–754 (2022)..
You, S. et al. Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules.Science379, 288–294 (2023)..
Luo, L. et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance.Nat. Energy8, 294–303 (2023)..
Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells.Science379, 690–694 (2023)..
Rajagopal, A., Yao, K.&Jen, A. K. Y. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering.Adv. Mater.,30, 1800455 (2018)..
Park, M. et al. Highly reproducible large-area perovskite solar cell fabrication via continuous megasonic spray coating of CH3NH3PbI3.Small15, 1804005 (2019)..
Bati, A. S. R. et al. Next-generation applications for integrated perovskite solar cells.Commun. Mater.4, 2 (2023)..
Koh, T. M. et al. Halide perovskite solar cells for building integrated photovoltaics: transforming building façades into power generators.Adv. Mater.,34, 2104661 (2022)..
Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts.Science345, 1593–1596 (2014)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution