无数据
1.Department of Electrical Engineering, Technion, Haifa 32000, Israel
2.Technische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
3.Institute of Physics, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
Alex Hayat (alex.hayat@ee.technion.ac.il)
Received:24 October 2023,
Revised:24 April 2024,
Accepted:2024-05-08,
Published Online:07 June 2024,
Published:31 July 2024
Scan QR Code
Bouscher, S. et al. Two-photon emission from a superlattice-based superconducting light-emitting structure. Light: Science & Applications, 13, 1331-1340 (2024).
Bouscher, S. et al. Two-photon emission from a superlattice-based superconducting light-emitting structure. Light: Science & Applications, 13, 1331-1340 (2024). DOI: 10.1038/s41377-024-01472-8.
Superconductor-semiconductor hybrid devices can bridge the gap between solid-state-based and photonics-based quantum systems
enabling new hybrid computing schemes
offering increased scalability and robustness. One example for a hybrid device is the superconducting light-emitting diode (SLED). SLEDs have been theoretically shown to emit polarization-entangled photon pairs by utilizing radiative recombination of Cooper pairs. However
the two-photon nature of the emission has not been shown experimentally before. We demonstrate two-photon emission in a GaAs/AlGaAs SLED. Measured electroluminescence spectra reveal unique two-photon superconducting features below the critical temperature (
T
c
)
while temperature-dependent photon-pair correlation experiments (
g
(2)
(
τ
T
)) demonstrate temperature-dependent time coincidences below
T
c
between photons emitted from the SLED. Our results pave the way for compact and efficient superconducting quantum light sources and open new directions in light-matter interaction studies.
Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79 , 135–174 (2007)..
Politi, A. et al. Silica-on-silicon waveguide quantum circuits. Science 320 , 646–649 (2008)..
Politi, A. et al. Integrated quantum photonics. IEEE J. Sel. Top. Quantum Electron. 15 , 1673–1684 (2009)..
O'Brien, J. L. Optical quantum computing. Science 318 , 1567–1570 (2007)..
O'Brien, J. L., Furusawa, A. & Ⅴučković, J. Photonic quantum technologies. Nat. Photonics 3 , 687–695 (2009)..
Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484 , 195–200 (2012)..
DiⅤincenzo, D. P. The physical implementation of quantum computation. Fortschr. Der Phys. 48 , 771–783 (2000)..
Blais, A. et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69 , 062320 (2004)..
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574 , 505–510 (2019)..
DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460 , 240–244 (2009)..
Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508 , 500–503 (2014)..
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science 339 , 1169–1174 (2013)..
Ladd, T. D. et al. Quantum computers. Nature 464 , 45–53 (2010)..
Mariantoni, M. et al. Implementingthe quantum von neumann architecture with superconducting circuits. Science 334 , 61–65 (2011)..
Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390 , 575–579 (1997)..
Furusawa, A. et al. Unconditional quantum teleportation. Science 282 , 706–709 (1998)..
Lo, H. K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photonics 8 , 595–604 (2014)..
Ma, X. F., Fung, C. H. F. & Lo, H. K. Quantum key distribution with entangled photon sources. Phys. Rev. A 76 , 012307 (2007)..
Couteau, C. et al. Applications of single photons in quantum metrology, biology and the foundations of quantum physics. Nat. Rev. Phys. 5 , 354–363 (2023)..
Matthews, J. C. F. et al. Towards practical quantum metrology with photon counting. npj Quantum Inf. 2 , 16023 (2016)..
Khoshnegar, M. & Majedi, A. H. Entangled photon pair generation in hybrid superconductor–semiconductor quantum dot devices. Phys. Rev. B 84 , 104504 (2011)..
Guerreiro, T. et al. Nonlinear interaction between single photons. Phys. Rev. Lett. 113 , 173601 (2014)..
Benson, O. et al. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84 , 2513–2516 (2000)..
Panna, D. et al. Andreev reflection in a superconducting light-emitting diode. Nano Lett. 18 , 6764–6769 (2018)..
Mou, S. S. et al. Superconducting light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 21 , 7900111 (2015)..
Mou, S. S. et al. Optical observation of superconducting density of states in luminescence spectra of InAs quantum dots. Phys. Rev. B 92 , 035308 (2015)..
Suemune, I. et al. A cooper-pair light-emitting diode: temperature dependence of both quantum efficiency and radiative recombination lifetime. Appl. Phys. Express 3 , 0 54001 (2010)..
Hayat, A. et al. Cooper-pair-based photon entanglement without isolated emitters. Phys. Rev. B 89 , 094508 (2014)..
Marjieh, R., Sabag, E. & Hayat, A. Light amplification in semiconductor-superconductor structures. N. J. Phys. 18 , 023019 (2016)..
Sabag, E. et al. Photonic bell-state analysis based on semiconductor-superconductor structures. Phys. Rev. B 95 , 094503 (2017)..
Bouscher, S. & Hayat, A. Universal photonic quantum gate by Cooper-pair-based optical nonlinearity. Phys. Rev. B 107 , 144516 (2023)..
Müller, M. et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8 , 224–228 (2014)..
Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8 , 15506 (2017)..
Kocher, C. A. & Commins, E. D. Polarization correlation of photons emitted in a n atomic cascade. Phys. Rev. Lett. 18 , 575–577 (1967)..
Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82 , 016001 (2019)..
Dell'Anno, F., De Siena, S. & Illuminati, F. Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428 , 53–168 (2006)..
Wagenknecht, C. et al. Experimental demonstration of a heralded entanglement source. Nat. Photonics 4 , 549–552 (2010)..
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75 , 4337–4341 (1995)..
Harris, S. E., Oshman, M. K. & Byer,R. L. Observation of tunable optical parametric fluorescence. Phys. Rev. Lett. 18 , 732–734 (1967)..
Magde, D. & Mahr, H. Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16 000 Å. Phys. Rev. Lett. 18 , 905–907 (1967)..
Lemos, G. B. et al. One-photon measurement of two-photon entanglement. Phys. Rev. Lett. 130 , 090202 (2023)..
Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2 , 365–381 (2020)..
Ecker, S. et al. Strategies for achieving high key rates in satellite-based QKD. npj Quantum Inf. 7 , 5 (2021)..
Asano, Y. et al. Luminescence of a cooper pair. Phys. Rev. Lett. 103 , 187001 (2009)..
Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys.-JETP 19 , 1228–1232 (1964)..
Bouscher, S., Winik, R. & Hayat, A. Andreev reflection enhancement in semiconductor-superconductor structures. Phys. Rev. B 97 , 054512 (2018)..
Bouscher, S. et al. Enhanced cooper-pair injection into a semiconductor structure by resonant tunneling. Phys. Rev. Lett. 128 , 127701 (2022)..
Devidas, T. R. et al. Kondo effect in defect-bound quantum dots coupled to NbSe 2 . Phys. Rev. B 107 , 094502 (2023)..
Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8 , 104–108 (2014)..
Cui, C. H., Zhang, L. & Fan, L. R. In situ control of effective Kerr nonlinearity with Pockels integrated photonics. Nat. Phys. 18 , 497–501 (2022)..
Lipeles, M., Novick, R. & Tolk, N. Direct detection of two-photon emission from the metastable state of singly ionized helium. Phys. Rev. Lett. 15 , 690–693 (1965)..
Hayat, A., Ginzburg, P. & Orenstein, M. Observation of two-photon emission from semiconductors. Nat. Photonics 2 , 238–241 (2008)..
Hayat, A., Ginzburg, P. & Orenstein, M. Measurement and model of the infrared two-photon emission spectrum of GaAs. Phys. Rev. Lett. 103 , 023601 (2009)..
Spasibko, K. Y., Iskhakov, T. S. & Chekhova, M. Ⅴ. Spectral properties of high-gain parametric down-conversion. Opt. Express 20 , 7507–7515 (2012)..
Krasinski, J. et al. Two-photon conical emission. Opt. Commun. 54 , 241–245 (1985)..
Borghs, G. et al. Band‐gap narrowing in highly doped n ‐and p ‐type GaAs studied by photoluminescence spectroscopy. J. Appl. Phys. 66 , 4381–4386 (1989)..
Jain, S. C., McGregor, J. M. & Roulston, D. J. Band‐gap narrowing in novel Ⅲ‐Ⅴ semiconductors. J. Appl. Phys. 68 , 3747–3749 (1990)..
Bardeen, J. Critical fields and currents in superconductors. Rev. Mod. Phys. 34 , 667–681 (1962)..
Sasakura, H. et al. Enhanced photon generation in a Nb/ n -InGaAs/ p -InP superconductor/semiconductor-diode light emitting device. Phys. Rev. Lett. 107 , 157403 (2011)..
Brown, R. H. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177 , 27–29 (1956)..
Fox, M. Quantum Optics: an Introduction (Oxford University Press, 2006).
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution