1.Department of Electrical Engineering, Technion, Haifa 32000, Israel
2.Technische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
3.Institute of Physics, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
Alex Hayat (alex.hayat@ee.technion.ac.il)
Published:31 July 2024,
Published Online:07 June 2024,
Received:24 October 2023,
Revised:24 April 2024,
Accepted:08 May 2024
Scan QR Code
Bouscher, S. et al. Two-photon emission from a superlattice-based superconducting light-emitting structure. Light: Science & Applications, 13, 1331-1340 (2024).
Bouscher, S. et al. Two-photon emission from a superlattice-based superconducting light-emitting structure. Light: Science & Applications, 13, 1331-1340 (2024). DOI: 10.1038/s41377-024-01472-8.
Superconductor-semiconductor hybrid devices can bridge the gap between solid-state-based and photonics-based quantum systems
enabling new hybrid computing schemes
offering increased scalability and robustness. One example for a hybrid device is the superconducting light-emitting diode (SLED). SLEDs have been theoretically shown to emit polarization-entangled photon pairs by utilizing radiative recombination of Cooper pairs. However
the two-photon nature of the emission has not been shown experimentally before. We demonstrate two-photon emission in a GaAs/AlGaAs SLED. Measured electroluminescence spectra reveal unique two-photon superconducting features below the critical temperature (
T
c
)
while temperature-dependent photon-pair correlation experiments (
g
(2)
(
τ
T
)) demonstrate temperature-dependent time coincidences below
T
c
between photons emitted from the SLED. Our results pave the way for compact and efficient superconducting quantum light sources and open new directions in light-matter interaction studies.
Kok, P. et al. Linear optical quantum computing with photonic qubits.Rev. Mod. Phys.79, 135–174 (2007)..
Politi, A. et al. Silica-on-silicon waveguide quantum circuits.Science320, 646–649 (2008)..
Politi, A. et al. Integrated quantum photonics.IEEE J. Sel. Top. Quantum Electron.15, 1673–1684 (2009)..
O'Brien, J. L. Optical quantum computing.Science318, 1567–1570 (2007)..
O'Brien, J. L., Furusawa, A.&Ⅴučković, J. Photonic quantum technologies.Nat. Photonics3, 687–695 (2009)..
Ritter, S. et al. An elementary quantum network of single atoms in optical cavities.Nature484, 195–200 (2012)..
DiⅤincenzo, D. P. The physical implementation of quantum computation.Fortschr. Der Phys.48, 771–783 (2000)..
Blais, A. et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation.Phys. Rev. A69, 062320 (2004)..
Arute, F. et al. Quantum supremacy using a programmable superconducting processor.Nature574, 505–510 (2019)..
DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor.Nature460, 240–244 (2009)..
Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance.Nature508, 500–503 (2014)..
Devoret, M. H.&Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook.Science339, 1169–1174 (2013)..
Ladd, T. D. et al. Quantum computers.Nature464, 45–53 (2010)..
Mariantoni, M. et al. Implementingthe quantum von neumann architecture with superconducting circuits.Science334, 61–65 (2011)..
Bouwmeester, D. et al. Experimental quantum teleportation.Nature390, 575–579 (1997)..
Furusawa, A. et al. Unconditional quantum teleportation.Science282, 706–709 (1998)..
Lo, H. K., Curty, M.&Tamaki, K. Secure quantum key distribution.Nat. Photonics8, 595–604 (2014)..
Ma, X. F., Fung, C. H. F.&Lo, H. K. Quantum key distribution with entangled photon sources.Phys. Rev. A76, 012307 (2007)..
Couteau, C. et al. Applications of single photons in quantum metrology, biology and the foundations of quantum physics.Nat. Rev. Phys.5, 354–363 (2023)..
Matthews, J. C. F. et al. Towards practical quantum metrology with photon counting.npj Quantum Inf.2, 16023 (2016)..
Khoshnegar, M.&Majedi, A. H. Entangled photon pair generation in hybrid superconductor–semiconductor quantum dot devices.Phys. Rev. B84, 104504 (2011)..
Guerreiro, T. et al. Nonlinear interaction between single photons.Phys. Rev. Lett.113, 173601 (2014)..
Benson, O. et al. Regulated and entangled photons from a single quantum dot.Phys. Rev. Lett.84, 2513–2516 (2000)..
Panna, D. et al. Andreev reflection in a superconducting light-emitting diode.Nano Lett.18, 6764–6769 (2018)..
Mou, S. S. et al. Superconducting light-emitting diodes.IEEE J. Sel. Top. Quantum Electron.21, 7900111 (2015)..
Mou, S. S. et al. Optical observation of superconducting density of states in luminescence spectra of InAs quantum dots.Phys. Rev. B92, 035308 (2015)..
Suemune, I. et al. A cooper-pair light-emitting diode: temperature dependence of both quantum efficiency and radiative recombination lifetime.Appl. Phys. Express3, 054001 (2010)..
Hayat, A. et al. Cooper-pair-based photon entanglement without isolated emitters.Phys. Rev. B89, 094508 (2014)..
Marjieh, R., Sabag, E.&Hayat, A. Light amplification in semiconductor-superconductor structures.N. J. Phys.18, 023019 (2016)..
Sabag, E. et al. Photonic bell-state analysis based on semiconductor-superconductor structures.Phys. Rev. B95, 094503 (2017)..
Bouscher, S.&Hayat, A. Universal photonic quantum gate by Cooper-pair-based optical nonlinearity.Phys. Rev. B107, 144516 (2023)..
Müller, M. et al. On-demand generation of indistinguishable polarization-entangled photon pairs.Nat. Photonics8, 224–228 (2014)..
Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.Nat. Commun.8, 15506 (2017)..
Kocher, C. A.&Commins, E. D. Polarization correlation of photons emitted in an atomic cascade.Phys. Rev. Lett.18, 575–577 (1967)..
Flamini, F., Spagnolo, N.&Sciarrino, F. Photonic quantum information processing: a review.Rep. Prog. Phys.82, 016001 (2019)..
Dell'Anno, F., De Siena, S.&Illuminati, F. Multiphoton quantum optics and quantum state engineering.Phys. Rep.428, 53–168 (2006)..
Wagenknecht, C. et al. Experimental demonstration of a heralded entanglement source.Nat. Photonics4, 549–552 (2010)..
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs.Phys. Rev. Lett.75, 4337–4341 (1995)..
Harris, S. E., Oshman, M. K.&Byer,R. L. Observation of tunable optical parametric fluorescence.Phys. Rev. Lett.18, 732–734 (1967)..
Magde, D.&Mahr, H. Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16 000 Å.Phys. Rev. Lett.18, 905–907 (1967)..
Lemos, G. B. et al. One-photon measurement of two-photon entanglement.Phys. Rev. Lett.130, 090202 (2023)..
Erhard, M., Krenn, M.&Zeilinger, A. Advances in high-dimensional quantum entanglement.Nat. Rev. Phys.2, 365–381 (2020)..
Ecker, S. et al. Strategies for achieving high key rates in satellite-based QKD.npj Quantum Inf.7, 5 (2021)..
Asano, Y. et al. Luminescence of a cooper pair.Phys. Rev. Lett.103, 187001 (2009)..
Andreev, A. F. The thermal conductivity of the intermediate state in superconductors.Sov. Phys.-JETP19, 1228–1232 (1964)..
Bouscher, S., Winik, R.&Hayat, A. Andreev reflection enhancement in semiconductor-superconductor structures.Phys. Rev. B97, 054512 (2018)..
Bouscher, S. et al. Enhanced cooper-pair injection into a semiconductor structure by resonant tunneling.Phys. Rev. Lett.128, 127701 (2022)..
Devidas, T. R. et al. Kondo effect in defect-bound quantum dots coupled to NbSe2.Phys. Rev. B107, 094502 (2023)..
Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources.Nat. Photonics8, 104–108 (2014)..
Cui, C. H., Zhang, L.&Fan, L. R. In situ control of effective Kerr nonlinearity with Pockels integrated photonics.Nat. Phys.18, 497–501 (2022)..
Lipeles, M., Novick, R.&Tolk, N. Direct detection of two-photon emission from the metastable state of singly ionized helium.Phys. Rev. Lett.15, 690–693 (1965)..
Hayat, A., Ginzburg, P.&Orenstein, M. Observation of two-photon emission from semiconductors.Nat. Photonics2, 238–241 (2008)..
Hayat, A., Ginzburg, P.&Orenstein, M. Measurement and model of the infrared two-photon emission spectrum of GaAs.Phys. Rev. Lett.103, 023601 (2009)..
Spasibko, K. Y., Iskhakov, T. S.&Chekhova, M. Ⅴ. Spectral properties of high-gain parametric down-conversion.Opt. Express20, 7507–7515 (2012)..
Krasinski, J. et al. Two-photon conical emission.Opt. Commun.54, 241–245 (1985)..
Borghs, G. et al. Band‐gap narrowing in highly dopedn‐andp‐type GaAs studied by photoluminescence spectroscopy.J. Appl. Phys.66, 4381–4386 (1989)..
Jain, S. C., McGregor, J. M.&Roulston, D. J. Band‐gap narrowing in novel Ⅲ‐Ⅴ semiconductors.J. Appl. Phys.68, 3747–3749 (1990)..
Bardeen, J. Critical fields and currents in superconductors.Rev. Mod. Phys.34, 667–681 (1962)..
Sasakura, H. et al. Enhanced photon generation in a Nb/n-InGaAs/p-InP superconductor/semiconductor-diode light emitting device.Phys. Rev. Lett.107, 157403 (2011)..
Brown, R. H.&Twiss, R. Q. Correlation between photons in two coherent beams of light.Nature177, 27–29 (1956)..
Fox, M.Quantum Optics: an Introduction(Oxford University Press, 2006).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution