1.Key Lab of Optical Fiber Sensing & Communications, University of Electronic Science and Technology of China (UESTC), Chengdu, China
2.Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
3.Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
Ernesto P. Raposo (ernesto.raposo@ufpe.br)
Anderson S. L. Gomes (andersonslgomes@gmail.com)
Zinan Wang (znwang@uestc.edu.cn)
Published:30 September 2024,
Published Online:02 July 2024,
Received:24 December 2023,
Revised:07 May 2024,
Accepted:09 May 2024
Scan QR Code
Qi, Y. F. et al. Replica symmetry breaking in 1D Rayleigh scattering system: theory and validations. Light: Science & Applications, 13, 1757-1765 (2024).
Qi, Y. F. et al. Replica symmetry breaking in 1D Rayleigh scattering system: theory and validations. Light: Science & Applications, 13, 1757-1765 (2024). DOI: 10.1038/s41377-024-01475-5.
Spin glass theory
as a paradigm for describing disordered magnetic systems
constitutes a prominent subject of study within statistical physics. Replica symmetry breaking (RSB)
as one of the pivotal concepts for the understanding of spin glass theory
means that under identical conditions
disordered systems can yield distinct states with nontrivial correlations. Random fiber laser (RFL) based on Rayleigh scattering (RS) is a complex disordered system
owing to the disorder and stochasticity of RS. In this work
for the first time
a precise theoretical model is elaborated for studying the photonic phase transition via the platform of RS-based RFL
in which we clearly reveal that
apart from the pump power
the photon phase variation in RFL is also an analogy to the temperature term in spin-glass phase transition
leading to a novel insight into the intrinsic mechanisms of photonic phase transition. In addition
based on this model and real-time high-fidelity detection spectral evolution
we theoretically predict and experimentally observe the mode-asymmetric characteristics of photonic phase transition in RS-based RFL. This finding contributes to a deeper understanding of the photonic RSB regime and the dynamics of RS-based RFL.
Parisi, G. Nobel lecture: multiple equilibria.Rev. Mod. Phys.95, 030501 (2023)..
Mezard, M., Parisi, G.&Virasoro, M. A. Spin glass theory and beyond. (Singapore: World Scientific, 1987).
Buchhold, M. et al. Dicke-model quantum spin and photon glass in optical cavities: nonequilibrium theory and experimental signatures.Phys. Rev. A87, 063622 (2013)..
Amit, D. J. Modeling brain function: the world of attractor neural networks. (Cambridge: Cambridge University Press, 1989).
Sherrington, D.&Kirkpatrick, S. Solvable model of a spin-glass.Phys. Rev. Lett.35, 1792–1796 (1975)..
Parisi, G. Infinite number of order parameters for spin-glasses.Phys. Rev. Lett.43, 1754–1756 (1979)..
Parisi, G. A sequence of approximated solutions to the S–K model for spin glasses.J. Phys. A: Math. Gen.13, L115–L121 (1980)..
Debenedetti, P. G.&Stillinger, F. H. Supercooled liquids and the glass transition.Nature410, 259–267 (2001)..
González, I. R. R. et al. Coexistence of turbulence-like and glassy behaviours in a photonic system.Sci. Rep.8, 17046 (2018)..
Fan, C. J. et al. Searching for spin glass ground states through deep reinforcement learning.Nat. Commun.14, 725 (2023)..
Morgenstern, I. Spin-glasses, optimization and neural networks.In: Heidelberg colloquium on glassy dynamics (eds. Hemmen,J. L.&Morgenstern, I. ) (Berlin, Heidelberg: Springer), 399–427 (1987).
Saccone, M. et al. Direct observation of a dynamical glass transition in a nanomagnetic artificial Hopfield network.Nat. Phys.18, 517–521 (2022)..
Brujić, J. et al. Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin.Nat. Phys.2, 282–286 (2006)..
Wiersma, D. S. Disordered photonics.Nat. Photonics7, 188–196 (2013)..
Leuzzi, L. et al. Phase diagram and complexity of mode-locked lasers: from order to disorder.Phys. Rev. Lett.102, 083901 (2009)..
Conti, C.&Leuzzi, L. Complexity of waves in nonlinear disordered media.Phys. Rev. B83, 134204 (2011)..
Ghofraniha, N. et al. Experimental evidence of replica symmetry breaking in random lasers.Nat. Commun.6, 6058 (2015)..
Gomes, A. S. L. et al. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements.Sci. Rep.6, 27987 (2016)..
Pincheira, P. I. R. et al. Observation of photonic paramagnetic to spin-glass transition in a specially designed TiO2particle-based dye-colloidal random laser.Opt. Lett.41, 3459–3462 (2016)..
Raposo, E. P.&Gomes, A. S. L. Analytical solution for the Lévy-like steady-state distribution of intensities in random lasers.Phys. Rev. A91, 043827 (2015)..
Lima, B. C. et al. Extreme-value statistics of intensities in a CW-pumped random fiber laser.Phys. Rev. A96, 013834 (2017)..
Tommasi, F. et al. Robustness of replica symmetry breaking phenomenology in random laser.Sci. Rep.6, 37113 (2016)..
Pierangeli, D. et al. Observation of replica symmetry breaking in disordered nonlinear wave propagation.Nat. Commun.8, 1501 (2017)..
Churkin, D. V. et al. Recent advances in fundamentals and applications of random fiber lasers.Adv. Opt. Photonics7, 516–569 (2015)..
Turitsyn, S. K. et al. Random distributed feedback fibre laser.Nat. Photonics4, 231–235 (2010)..
Gomes, A. S. L. et al. Photonics bridges between turbulence and spin glass phenomena in the 2021 nobel prize in physics.Light Sci. Appl.11, 104 (2022)..
Conti, C.&DelRe, E. Photonics and the Nobel prize in physics.Nat. Photonics16, 6–7 (2022)..
Gomes, A. S. L. et al. Glassy behavior in a one-dimensional continuous-wave erbium-doped random fiber laser.Phys. Rev. A94, 011801 (2016)..
de Araújo, C. B., Gomes, A. S. L.&Raposo, E. P. Lévy statistics and the glassy behavior of light in random fiber lasers.Appl. Sci.7, 644 (2017)..
Wang, Z. N. et al. High power random fiber laser with short cavity length: theoretical and experimental investigations.IEEE J. Sel. Top. Quantum Electron.21, 10–15 (2015)..
Xu, J. M. et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output.Photonics Res.5, 350–354 (2017)..
Wu, H. et al. Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser.Photonics Res.11, 808–816 (2023)..
Han, B. et al. Low-noise high-order Ramanfiber laser pumped by random lasing.Opt. Lett.45, 5804–5807 (2020)..
Han. B. et al. Spectral manipulations of random fiber lasers: principles, characteristics, and applications.Laser Photonics Rev.https://doi.org/10.1002/lpor.202400122https://doi.org/10.1002/lpor.202400122(2024)..
Lin, S. T. et al. Wideband remote-sensing based on random fiber laser.J. Light. Technol.40, 3104–3110 (2022)..
Jia, X. H. et al. Random-lasing-based distributed fiber-optic amplification.Opt. Express21, 6572–6577 (2013)..
Wang, S. S. et al. High-power multimode random fiber laser for speckle-free imaging.Ann. Phys.533, 2100390 (2021)..
Zhang, H. W. et al. Quasi-kilowatt random fiber laser.Opt. Lett.44, 2613–2616 (2019)..
Fan, M. Q. et al. Spectrum-tailored random fiber laser towards ICF laser facility.Matter Radiat. Extremes8, 025902 (2023)..
Turitsyn, S. K. et al. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics.Opt. Express19, 8394–8405 (2011)..
Lin, S. T. et al. Radiation build-up and dissipation in Raman random fiber laser.Sci. China Inf. Sci.67, 112402 (2024)..
Tovar, P., Lima, B. C.&von der Weid, J. P. Modelling intensity fluctuations of Rayleigh backscattered coherent light in single-mode fibers.J. Light. Technol.40, 4765–4775 (2022)..
Jiang, J. L. et al. Continuous chirped-wave phase-sensitive optical time domain reflectometry.Opt. Lett.46, 685–688 (2021)..
Qi, Y. F. et al. Random fiber laser dynamic sensing based on rapid spectral detection.Laser Optoelectron. Prog.60, 1106027 (2023)..
Tovar, P.&von der Weid, J. P. Dynamic evolution of narrow spectral modes in stochastic Brillouin random fiber lasers.IEEE Photonics Technol. Lett.33, 1471–1474 (2021)..
Yin, S., Galiffi, E.&Alù, A. Floquet metamaterials.eLight2, 8, https://doi.org/10.1186/s43593-022-00015-1 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution