1.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
4.Songshan Lake Materials Laboratory, Dongguan 523808 Guangdong, China
Bei-Bei Li (libeibei@iphy.ac.cn)
Published:31 August 2024,
Published Online:09 July 2024,
Received:09 November 2023,
Revised:10 April 2024,
Accepted:13 May 2024
Scan QR Code
Cao, X. N. et al. Ultrasound sensing with optical microcavities. Light: Science & Applications, 13, 1487-1511 (2024).
Cao, X. N. et al. Ultrasound sensing with optical microcavities. Light: Science & Applications, 13, 1487-1511 (2024). DOI: 10.1038/s41377-024-01480-8.
Ultrasound sensors play an important role in biomedical imaging
industrial nondestructive inspection
etc. Traditional ultrasound sensors that use piezoelectric transducers face limitations in sensitivity and spatial resolution when miniaturized
with typical sizes at the millimeter to centimeter scale. To overcome these challenges
optical ultrasound sensors have emerged as a promising alternative
offering both high sensitivity and spatial resolution. In particular
ultrasound sensors utilizing high-quality factor (
Q
) optical microcavities have achieved unprecedented performance in terms of sensitivity and bandwidth
while also enabling mass production on silicon chips. In this review
we focus on recent advances in ultrasound sensing applications using three types of optical microcavities: Fabry-Perot cavities
π-phase-shifted Bragg gratings
and whispering gallery mode microcavities. We provide an overview of the ultrasound sensing mechanisms employed by these microcavities and discuss the key paramet
ers for optimizing ultrasound sensors. Furthermore
we survey recent advances in ultrasound sensing using these microcavity-based approaches
highlighting their applications in diverse detection scenarios
such as photoacoustic imaging
ranging
and particle detection. The goal of this review is to provide a comprehensive understanding of the latest advances in ultrasound sensing with optical microcavities and their potential for future development in high-performance ultrasound imaging and sensing technologies.
Finlay, M. C. et al. Through-needleall-optical ultrasound imaging in vivo: a preclinical swine study.Light Sci. Appl.6, e17103 (2017)..
He, H. L. et al. Opening a window to skin biomarkers for diabetes stage with optoacoustic mesoscopy.Light Sci. Appl.12, 231 (2023)..
Ouyang, Y. L. et al. A review of ultrasound detection methods for breast microcalcification.Math. Biosci. Eng.16, 1761–1785 (2019)..
Guo, R. R. et al. Ultrasound imaging technologies for breast cancer detection and management: A review.Ultrasound Med. Biol.44, 37–70 (2018)..
Hauptmann, P., Hoppe, N.&Püttmer, A. Application of ultrasonic sensors in the process industry.Meas. Sci. Technol.13, R73–R83 (2002)..
Regtien, P.&Dertien, E. Acoustic sensors. In Regtien, P.&Dertien, E. (eds.)Sensors for Mechatronics 2nd edn, 267–303 (New York: Elsevier, 2018).https://www.sciencedirect.com/science/article/pii/B9780128138106000094https://www.sciencedirect.com/science/article/pii/B9780128138106000094..
Lee, W.&Roh, Y. Ultrasonic transducers for medical diagnostic imaging.Biomed. Eng. Lett.7, 91–97 (2017)..
Manwar, R., Kratkiewicz, K.&Avanaki, K. Overview of ultrasound detection technologies for photoacoustic imaging.Micromachines11, 692 (2020)..
Chan, J. et al. Photoacoustic imaging with capacitive micromachined ultrasound transducers: Principles and developments.Sensors19, 3617 (2019)..
Jung, J. et al. Review of piezoelectric micromachined ultrasonic transducers and their applications.J. Micromech. Microeng.27, 113001 (2017)..
He, Y. S. et al. Piezoelectric micromachined ultrasound transducer technology: Recent advances and applications.Biosensors13, 55 (2022)..
Roy, K., Lee, J. E.-Y.&Lee, C. Thin-film PMUTs: a review of over 40 years of research.Microsyst. Nanoeng.9, 95 (2023)..
Fu, B. et al. Optical ultrasound sensors for photoacoustic imaging: a narrative review.Quant. Imaging Med. Surg.12, 1608–1631 (2022)..
Wissmeyer, G. et al. Looking at sound: optoacoustics with all-optical ultrasound detection.Light Sci. Appl.7, 53 (2018)..
Li, J.-T. et al. Coherently parallel fiber-optic distributed acoustic sensing using dual kerr soliton microcombs.Sci. Adv.10, eadf8666 (2024)..
Ma, J. G., Ma, X. D.&Jun, X. L. Optical ultrasound sensing for biomedical imaging.Measurement200, 111620 (2022)..
Rousseau, G. et al. Non-contact biomedical photoacoustic and ultrasound imaging.J. Biomed. Opt.17, 061217 (2012)..
Wang, J. et al. Sound source localization based on michelson fiber optic interferometer array.Opt. Fiber Technol.51, 112–117 (2019)..
Lamela, H., Gallego, D.&Oraevsky, A. Optoacoustic imaging using fiber-optic interferometric sensors.Opt. Lett.34, 3695–3697 (2009)..
Bauer-Marschallinger, J., Felbermayer, K.&Berer, T. All-optical photoacoustic projection imaging.Biomed. Opt. Express8, 3938–3951 (2017)..
Rosenthal, A. et al. Embedded ultrasound sensor in a silicon-on-insulator photonic platform.Appl. Phys. Lett.104, 021116 (2014)..
Rosenthal, A., Razansky, D.&Ntziachristos, V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating.Opt. Lett.36, 1833–1835 (2011)..
Vahala, K. J. Optical microcavities.Nature424, 839–846 (2003)..
Vollmer, F., Arnold, S.&Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode.Proc. Natl Acad. Sci. USA105, 20701–20704 (2008)..
Riobó, L. et al. Noise reduction in resonator-based ultrasound sensors by using a CW laser and phase detection.Opt. Lett.44, 2677–2680 (2019)..
Meng, J.-W. et al. Dissipative acousto-optic interactions in optical microcavities.Phys. Rev. Lett.129, 073901 (2022)..
Garrett, D. C.&Wang, L. V. Acoustic sensing with light.Nat. Photonics15, 324–326 (2021)..
Metcalfe, M. Applications of cavity optomechanics.Appl. Phys. Rev.1, 031105 (2014)..
Li, B.-B. et al. Cavity optomechanical sensing.Nanophotonics10, 2799–2832 (2021)..
Hyun Kim, K. et al. Cavity optomechanics on a microfluidic resonator with water and viscous liquids.Light Sci. Appl.2, e110 (2013)..
Ding, L. et al. High frequency GaAs nano-optomechanical disk resonator.Phys. Rev. Lett.105, 263903 (2010)..
Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators.Nat. Phys.5, 909–914 (2009)..
Wilson, D. J. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate.Nature524, 325–329 (2015)..
Gavartin, E., Verlot, P.&Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements.Nat. Nanotechnol.7, 509–514 (2012)..
Schreppler, S. et al. Optically measuring force near the standard quantum limit.Science344, 1486–1489 (2014)..
Yu, W. Y. et al. Cavity optomechanical spring sensing of single molecules.Nat. Commun.7, 12311 (2016)..
Sansa, M. et al. Optomechanical mass spectrometry.Nat. Commun.11, 3781 (2020)..
Krause, A. G. et al. A high-resolution microchip optomechanical accelerometer.Nat. Photonics6, 768–772 (2012)..
Li, B.-B. et al. Ultrabroadband and sensitive cavity optomechanical magnetometry.Photonics Res.8, 1064–1071 (2020)..
Li, B.-B. et al. Quantum enhanced optomechanical magnetometry.Optica5, 850–856 (2018)..
Basiri-Esfahani, S. et al. Precision ultrasound sensing on a chip.Nat. Commun.10, 132 (2019)..
Yang, H. et al. Micropascal-sensitivity ultrasound sensors based on optical microcavities.Photonics Res.11, 1139–1147 (2023)..
Aspelmeyer, M., Kippenberg, T. J.&Marquardt, F. Cavity optomechanics.Rev. Mod. Phys.86, 1391–1452 (2014)..
Bowen, W. P.&Milburn, G. J. Quantum optomechanics (Boca Raton: CRC press, Boca Raton, 2015), 1st edn.
Kellnberger, S. et al. Optoacoustic microscopy at multiple discrete frequencies.Light Sci. Appl.7, 109 (2018)..
Xu, M. H.&Wang, L. V. Analytic explanation of spatial resolution related to bandwidth and detectoraperture size in thermoacoustic or photoacoustic reconstruction.Phys. Rev. E67, 056605 (2003)..
Yao, J. J.&Wang, L. V. Photoacoustic microscopy.Laser Photonics Rev.7, 758–778 (2013)..
Zheng, Z. et al. Development of a novel CMUT-based concentric dual-element ultrasonic transducer: Design, fabrication, and characterization.J. Microelectromech. Syst.27, 538–546 (2018)..
Zhang, C. et al. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging.ACS Photonics1, 1093–1098 (2014)..
Ansari, R. et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy.Light Sci. Appl.7, 75 (2018)..
Rebling, J. et al. Optoacoustic characterization of broadband directivity patterns of capacitive micromachined ultrasonic transducers.J. Biomed. Opt.22, 041005 (2016)..
Guggenheim, J. A. et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing.Nat. Photonics11, 714–719 (2017)..
Dong, B. Q., Sun, C.&Zhang, H. F. Optical detection of ultrasound in photoacoustic imaging.IEEE Trans. Biomed. Eng.64, 4–15 (2017)..
Zhang, Z. et al. Theoretical and experimental studies of distance dependent response of micro-ring resonator-based ultrasonic detectors for photoacoustic microscopy.J. Appl. Phys.116, 144501 (2014)..
Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor.Phys. Rev. Lett.97, 133601 (2006)..
Mason, D. et al. Continuous force and displacement measurement below the standard quantum limit.Nat. Phys.15, 745–749 (2019)..
Guzmán Cervantes, F. et al. High sensitivity optomechanical reference accelerometer over 10 kHz.Appl. Phys. Lett.104, 221111 (2014)..
Jathoul, A. P. et al. Deepinvivophotoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter.Nat. Photonics9, 239–246 (2015)..
Cao, Z. X. et al. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity.Light Sci. Appl.8, 107 (2019)..
Li, Y. X. et al. High-spatial-resolution ultrasonic sensor using a fiber-optic Fabry-Perot interferometer.Opt. Commun.453, 124422 (2019)..
Ma, J. et al. Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm.IEEE Photonics Technol. Lett.25, 932–935 (2013)..
Xu, F. et al. Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm.Opt. Lett.39, 2838–2840 (2014)..
Zhang, W. L. et al. An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging.IEEE Photonics J.9, 7103208 (2017)..
Zhang, W. L. et al. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor.Opt. Express26, 11025–11033 (2018)..
Ma, J. et al. Flexible microbubble-based Fabry-Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging.Photonics Res.8, 1558–1565 (2020)..
Fan, H. B. et al. Ultrasound sensing based on an in-fiber dual-cavity Fabry-Perot interferometer.Opt. Lett.44, 3606–3609 (2019)..
Colchester, R. J. et al. All-optical rotational ultrasound imaging.Sci. Rep.9, 5576 (2019)..
Ma, X. D. et al. Fiber optic-based laser interferometry array for three-dimensional ultrasound sensing.Opt. Lett.44, 5852–5855 (2019)..
Yang, L. Y. et al. Multi-channel parallel ultrasound detection based on a photothermal tunable fiber optic sensor array.Opt. Lett.47, 3700–3703 (2022)..
Ma, X. D. et al. A Fabry-Perot fiber-optic array for photoacoustic imaging.IEEE Trans. Instrum. Meas.71, 4501508 (2022)..
Preisser, S. et al. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging.Biomed. Opt. Express7, 4171–4186 (2016)..
Hornig, G. J. et al. Ultrasound sensing at thermomechanical limits with optomechanical buckled-dome microcavities.Opt. Express30, 33083–33096 (2022)..
Ren, X. Y. et al. Dual-comb optomechanical spectroscopy.Nat. Commun.14, 5037 (2023)..
Fomitchov, P. A.&Krishnaswamy, S. Response of a fiber Bragg grating ultrasonic sensor.Optical Eng.42, 956 – 963 (2003)..
Minardo, A. et al. Response of fiber Bragg gratings to longitudinal ultrasonic waves.IEEE Trans. Ultrason., Ferroelectr., Frequency Control52, 304–312 (2005)..
Liu, T. Q.&Han, M. Analysis ofπ-phase-shifted fiber Bragg gratings for ultrasonic detection.IEEE Sens. J.12, 2368–2373 (2012)..
Wissmeyer, G. et al. All-optical optoacoustic microscope based on wideband pulse interferometry.Opt. Lett.41, 1953–1956 (2016)..
Shnaiderman, R. et al. Fiber interferometer for hybrid optical and optoacoustic intravital microscopy.Optica4, 1180–1187 (2017)..
Wang, L. et al. Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer.Sci. Adv.9, eadg8600 (2023)..
Shnaiderman, R. et al. A submicrometre silicon-on-insulator resonator for ultrasound detection.Nature585, 372–378 (2020)..
Hazan, Y. et al. Silicon-photonics acoustic detector for optoacoustic micro-tomography.Nat. Commun.13, 1488 (2022)..
Niu, R. et al. kHz-precision wavemeter based on reconfigurable microsoliton.Nat. Commun.14, 169 (2023)..
Armani, D. K. et al. Ultra-high-Q toroid microcavity on a chip.Nature421, 925–928 (2003)..
Lee, H. et al. Chemically etched ultrahigh-Qwedge-resonator on a silicon chip.Nat. Photonics6, 369–373 (2012)..
Savchenkov, A. A. et al. Optical resonators with ten million finesse.Opt. Express15, 6768–6773 (2007)..
Liu, J. et al. Emerging material platforms for integrated microcavity photonics.Sci. China Phys., Mech. Astron.65, 104201 (2022)..
Wang, C. L. et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics.Light Sci. Appl.10, 139 (2021)..
Wang, C. L. et al. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform.Light Sci. Appl.11, 341 (2022)..
Xu, G.-T. et al. Optomechanical magnetometry on a bubble resonator with YIG microsphere.IEEE Photonics Technol. Lett.35, 393–396 (2023)..
Jiang, X. F. et al. Whispering-gallery sensors.Matter3, 371–392 (2020)..
Suh, M.-G. et al. Microresonator soliton dual-comb spectroscopy.Science354, 600–603 (2016)..
Liao, J.&Yang, L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements.Light Sci. Appl.10, 32 (2021)..
Li, B.-B. et al. On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator.Appl. Phys. Lett.96, 251109 (2010)..
Yu, X.-C. et al. Single-molecule optofluidic microsensor with interface whispering gallery modes.Proc. Natl Acad. Sci. USA119, e2108678119 (2022)..
Jin, M. et al. 1/f-noise-free optical sensing with an integrated heterodyne interferometer.Nat. Commun.12, 1973 (2021)..
Tang, S.-J. et al. Laser particles with omnidirectional emission for cell tracking.Light Sci. Appl.10, 23 (2021)..
Shen, B.-Q. et al. Detection of single nanoparticles using the dissipative interaction in a high-Qmicrocavity.Phys. Rev. Appl.5, 024011 (2016)..
Baaske, M. D., Foreman, M. R.&Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform.Nat. Nanotechnol.9, 933–939 (2014)..
Shao, L. B. et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening.Adv. Mater.25, 5616–5620 (2013)..
Li, B.-B. et al. Single nanoparticle detection using split-mode microcavity Raman lasers.Proc. Natl Acad. Sci. USA111, 14657–14662 (2014)..
Özdemir, K. et al. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser.Proc. Natl Acad. Sci. USA111, E3836–E3844 (2014)..
He, L. N. et al. Detecting single viruses and nanoparticles using whispering gallery microlasers.Nat. Nanotechnol.6, 428–432 (2011)..
Zhu, J. G. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator.Nat. Photonics4, 46–49 (2010)..
Vollmer, F.&Yang, L. Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices.Nanophotonics1, 267–291 (2012)..
Zhi, Y. Y. et al. Single nanoparticle detection using optical microcavities.Adv. Mater.29, 1604920 (2017)..
Liu, W. J. et al. Nonlinear sensing with whispering-gallery mode microcavities: From label-free detection to spectral fingerprinting.Nano Lett.21, 1566–1575 (2021)..
Yu, D. S. et al. Whispering-gallery-mode sensors for biological and physical sensing.Nat. Rev. Methods Prim.1, 83 (2021)..
Yang, D.-Q. et al. Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities.Light Sci. Appl.10, 128 (2021)..
Duan, B. et al. High-precision whispering gallery microsensors with ergodic spectra empowered by machine learning.Photonics Res.10, 2343–2348 (2022)..
Yang, D. Q. et al. Real-time monitoring of hydrogel phase transition in an ultrahighQmicrobubble resonator.Photonics Res.8, 497–502 (2020)..
Yu, Y., Xi, X.&Sun, X. K. Observation of mechanical bound states in the continuum in an optomechanical microresonator.Light Sci. Appl.11, 328 (2022)..
Li, J. et al. All-optical synchronization of remote optomechanical systems.Phys. Rev. Lett.129, 063605 (2022)..
Li, M. F. et al. A compact and highly sensitive voice-eavesdropping microresonator.J. Lightwave Technol.39, 6327–6333 (2021)..
Sun, H. et al. Direct electron beam writing of electro-optic polymer microring resonators.Opt. Express16, 6592–6599 (2008)..
Li, H. et al. A transparent broadband ultrasonic detector basedon an optical micro-ring resonator for photoacoustic microscopy.Sci. Rep.4, 4496 (2014)..
Zhang, C. et al. Review of imprinted polymer microrings as ultrasound detectors: Design, fabrication, and characterization.IEEE Sens. J.15, 3241–3248 (2015)..
Maxwell, A. et al. Polymer microring resonators for high-frequency ultrasound detection and imaging.IEEE J. Sel. Top. Quantum Electron.14, 191–197 (2008)..
Xie, Z. X. et al. Pure optical photoacoustic microscopy.Opt. Express19, 9027–9034 (2011)..
Dong, B. Q. et al. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.Optica2, 169–176 (2015)..
Li, H. et al. Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography.Nat. Commun.10, 4277 (2019)..
Dong, B. Q. et al. Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications.Opt. Lett.39, 4372–4375 (2014)..
Leinders, S. M. et al. A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane.Sci. Rep.5, 14328 (2015)..
Peternella, F. G. et al. Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer.Opt. Express25, 31622–31639 (2017)..
Yang, W. J. et al. Etched silicon-on-insulator microring resonator for ultrasound measurement.IEEE Photonics J.12, 6801409 (2020)..
Westerveld, W. J. et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics.Nat. Photonics15, 341–345 (2021)..
De Freitas, J. M., Birks, T. A.&Rollings, M. Optical micro-knot resonator hydrophone.Opt. Express23, 5850–5860 (2015)..
Chen, H. et al. A high-frequency hydrophone using an optical fiber microknot resonator.Opt. Commun.446, 77–83 (2019)..
Pan, J. S. et al. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography.Nat. Commun.14, 3250 (2023)..
Meng, J.-W. et al. Ultrasound detection using a thermal-assisted microcavity Raman laser.AAPPS Bull.32, 38 (2022)..
Chistiakova, M. V.&Armani, A. M. Photoelastic ultrasound detection using ultra-high-Qsilica optical resonators.Opt. Express22, 28169–28179 (2014)..
Yang, J. F. et al. Multiphysical sensing of light, sound and microwave in a microcavity Brillouin laser.Nanophotonics9, 2915–2925 (2020)..
Sun, J. et al. An encapsulated optical microsphere sensor for ultrasound detection and photoacoustic imaging.Sci. China Phys., Mech. Astron.65, 224211 (2021)..
Sun, J. L. et al. Whispering-gallery optical microprobe for photoacoustic imaging.Photonics Res.11, A65–A71 (2023)..
Wang, K. et al. Ultrasound sensing using packaged microsphere cavity in the underwater environment.Sensors22, 4190 (2022)..
Kim, K. H. et al. Air-coupled ultrasound detection using capillary-based optical ring resonators.Sci. Rep.7, 109 (2017)..
Tu, X. et al. Underwater acoustic wave detection based on packaged optical microbubble resonator.J. Lightwave Technol.40, 6272–6279 (2022)..
Frigenti, G. et al. Resonant microbubble as a microfluidic stage for all-optical photoacoustic sensing.Phys. Rev. Appl.12, 014062 (2019)..
Frigenti, G. et al. Microbubble resonators for all-optical photoacoustics of flowing contrast agents.Sensors20, 1696 (2020)..
Frigenti, G. et al. Microbubble resonators for scattering-free absorption spectroscopy of nanoparticles.Opt. Express29, 31130–31136 (2021)..
Pan, J. S. et al. Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors.Photonics Res.8, 303–310 (2020)..
Song, J. C. et al. Ultrasound measurement using on-chip optical micro-resonators and digital optical frequency comb.J. Lightwave Technol.38, 5293–5301 (2020)..
Xing, T. et al. An ultrahigh sensitivity acoustic sensor system for weak signal detection based on an ultrahigh-Q CaF2resonator.Microsyst. Nanoeng.9, 65 (2023)..
Yang, H. et al. High-sensitivity air-coupled megahertz-frequency ultrasound detection using on-chip microcavities.Phys. Rev. Appl.18, 034035 (2022)..
Liu, J. Q. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits.Nat. Commun.12, 2236 (2021)..
Xu, X. Y. et al. Phone-sized whispering-gallery microresonator sensing system.Opt. Express24, 25905–25910 (2016)..
Xu, X. Y. et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping.Light Sci. Appl.7, 62 (2018)..
Mao, W. B. et al. A whispering-gallery scanning microprobe for raman spectroscopy and imaging.Light Sci. Appl.12, 247 (2023)..
Sun, Y. et al. Applications of optical microcombs.Adv. Opt. Photonics15, 86–175 (2023)..
Xue, X. X. et al. Dispersion-less Kerr solitons in spectrally confined optical cavities.Light Sci. Appl.12, 19 (2023)..
Das, B. et al. Dynamic strain response of aπ-phase-shifted FBG sensor with phase-sensitive detection.OSA Contin.1, 1172–1184 (2018)..
Tang, S.-J. et al. Single-particle photoacoustic vibrational spectroscopy using optical microresonators.Nat. Photonics17, 951–956 (2023)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution