1.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, China
2.University of the Chinese Academy of Sciences, 100049 Beijing, China
3.Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, 511458 Guangzhou, China
4.Department of Engineering Science and Mechanics, and Materials Research Institute, Pennsylvania State University, University Park, State College, PA 16802, USA
5.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081 Changsha, China
6.Department of Physics, Zhejiang Normal University, 321004 Jinhua, China
Şahin K. Özdemir (sko9@psu.edu)
Fei Zhou (zhoufei@wipm.ac.cn)
Hui Jing (jinghui73@foxmail.com)
Mang Feng (mangfeng@wipm.ac.cn)
Published:31 July 2024,
Published Online:26 June 2024,
Received:27 September 2023,
Revised:18 April 2024,
Accepted:14 May 2024
Scan QR Code
Bu, J. T. et al. Chiral quantum heating and cooling with an optically controlled ion.,Light: Science & Applications, 13, 1393-1400 (2024).
Bu, J. T. et al. Chiral quantum heating and cooling with an optically controlled ion.,Light: Science & Applications, 13, 1393-1400 (2024). DOI: 10.1038/s41377-024-01483-5.
Quantum heat engines and refrigerators are open quantum systems
whose dynamics can be well understood using a non-Hermitian formalism. A prominent feature of non-Hermiticity is the existence of exceptional points (EPs)
which has no counterpart in closed quantum systems. It has been shown in classical systems that dynamical encirclement in the vicinity of an EP
whether the loop includes the EP or not
could lead to chiral mode conversion. Here
we show that this is valid also for quantum systems when dynamical encircling is performed in the vicinity of their Liouvillian EPs (LEPs)
which include the effects of quantum jumps and associated noise—an important quantum feature not present in previous works. We demonstrate
using a Paul-trapped ultracold ion
the first chiral quantum heating and refrigeration by dynamically encircling a closed loop in the vicinity of an LEP. We witness the cycling direction to be associated with the chirality and heat release (absorption) of the quantum heat engine (quantum refrigerator). Our experiments have revealed that not only the adiabaticity breakdown but also the Landau–Zener–Stückelberg process play an essential role during dynamic encircling
resulting in chiral thermodynamic cycles. Our observations contribute to further understanding of chiral and topological features in non-Hermitian systems and pave a way to exploring the relation between chirality and quantum thermodynamics.
Roβnagel, J. et al. A single-atom heat engine.Science352, 325–329 (2016)..
von Lindenfels, D. et al. Spin heat engine coupled to a harmonic-oscillator flywheel.Phys. Rev. Lett.123, 080602 (2019)..
Ryan, C. A. et al. Spin based heat engine: demonstration of multiple rounds of algorithmic cooling.Phys. Rev. Lett.100, 140501 (2008)..
Peterson, J. P. S. et al. Experimental characterization of a spin quantum heat engine.Phys. Rev. Lett.123, 240601 (2019)..
Koski, J. V. et al. Experimental realization of a Szilard engine with a single electron.Proc. Natl Acad. Sci. USA111, 13786–13789 (2014)..
Ono, K. et al. Analog of a quantum heat engine using a single-spin qubit.Phys. Rev. Lett.125, 166802 (2020)..
Klatzow, J. et al. Experimental demonstration of quantum effects in the operation of microscopic heat engines.Phys. Rev. Lett.122, 110601 (2019)..
Quan, H. T. et al. Maxwell's demon assisted thermodynamic cycle in superconducting quantum circuits.Phys. Rev. Lett.97, 180402 (2006)..
Zhang, K. Y., Bariani, F.&Meystre, P. Quantum optomechanical heat engine.Phys. Rev. Lett.112, 150602 (2014)..
Dechant, A., Kiesel, N.&Lutz, E. All-optical nanomechanical heat engine.Phys. Rev. Lett.114, 183602 (2015)..
Kosloff, R.&Levy, A. Quantum heat engines and refrigerators: continuous devices.Annu. Rev. Phys. Chem.65, 365–393 (2014)..
Mari, A.&Eisert, J. Cooling by heating: very hot thermal light can significantly cool quantum systems.Phys. Rev. Lett.108, 120602 (2012)..
Levy, A.&Kosloff, R. Quantum absorption refrigerator.Phys. Rev. Lett.108, 070604 (2012)..
Tan, K. Y. et al. Quantum-circuit refrigerator.Nat. Commun.8, 15189 (2017)..
Venturelli, D., Fazio, R.&Giovannetti, V. Minimal self-contained quantum refrigeration machine based on four quantum dots.Phys. Rev. Lett.110, 256801 (2013)..
Maslennikov, G. et al. Quantum absorption refrigerator with trapped ions.Nat. Commun.10, 202 (2019)..
Mitchison, M. T. et al. Realising a quantum absorption refrigerator with an atom-cavity system.Quantum Sci. Technol.1, 015001 (2016)..
Miri, M. A.&Alù, A. Exceptional points in optics and photonics.Science363, eaar7709 (2019)..
Özdemir, Ş. K. et al. Parity-time symmetry and exceptional points in photonics.Nat. Mater.18, 783–798 (2019)..
Wu, Y. et al. Observation of parity-time symmetry breaking in a single-spin system.Science364, 878–880 (2019)..
Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids.Nature607, 271–275 (2022)..
Ergoktas, M. S. et al. Topological engineering of terahertz light using electrically tunable exceptional point singularities.Science376, 184–188 (2022)..
Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces.Nat. Commun.13, 599 (2022)..
Naghiloo, M. et al. Quantum state tomography across the exceptional point in a single dissipative qubit.Nat. Phys.15, 1232–1236 (2019)..
Ding, L. Y. et al. Experimental determination ofPT-symmetric exceptional points in a single trapped ion.Phys. Rev. Lett.126, 083604 (2021)..
Abbasi, M. et al. Topological quantum state control through exceptional-point proximity.Phys. Rev. Lett.128, 160401 (2022)..
Minganti, F. et al. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps.Phys. Rev. A100, 062131 (2019)..
Huber, J. et al. Emergence ofPT-symmetry breaking in open quantum systems.SciPost Phys.9, 052 (2020)..
Nakanishi, Y.&Sasamoto, T.PTphase transition in open quantum systems with Lindblad dynamics.Phys. Rev. A105, 022219 (2022)..
Khandelwal, S., Brunner, N.&Haack, G. Signatures of Liouvillian exceptional points in a quantum thermal machine.PRX Quantum2, 040346 (2021)..
Chen, W. J. et al. Decoherence-induced exceptional points in a dissipative superconducting qubit.Phys. Rev. Lett.128, 110402 (2022)..
Zhang, J. W. et al. Dynamical controlof quantum heat engines using exceptional points.Nat. Commun.13, 6225 (2022)..
Bu, J. T. et al. Enhancement of quantum heat engine by encircling a Liouvillian exceptional point.Phys. Rev. Lett.130, 110402 (2023)..
Liu, W. Q. et al. Dynamically encircling an exceptional point in a real quantum system.Phys. Rev. Lett.126, 170506 (2021)..
Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching.Nature537, 76–79 (2016)..
Zhang, X. L. et al. Dynamically encircling exceptional points: in situ control of encircling loops and the role of the starting point.Phys. Rev. X8, 021066 (2018)..
Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band.Nature562, 86–90 (2018)..
Zhang, X. L., Jiang, T. S.&Chan, C. T. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes.Light Sci. Appl.8, 88 (2019)..
Liu, Q. J. et al. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points.Phys. Rev. Lett.124, 153903 (2020)..
Li, A. D. et al. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points.Phys. Rev. Lett.125, 187403 (2020)..
Baek, S. et al. Non-Hermitian chiral degeneracy of gated graphene metasurfaces.Light Sci. Appl.12, 87 (2023)..
Hassan, A. U. et al. Chiral state conversion without encircling an exceptional point.Phys. Rev. A96, 052129 (2017)..
Zhong, Q. et al. Winding around non-Hermitian singularities.Nat. Commun.9, 4808 (2018)..
Feilhauer, J. et al. Encircling exceptional points as a non-Hermitian extension of rapid adiabatic passage.Phys. Rev. A102, 040201 (2020)..
Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point.Nature605, 256–261 (2022)..
Xu, H. et al. Topological energy transfer in an optomechanical system with exceptional points.Nature537, 80–83 (2016)..
Khandelwal, S. et al. Chiral Bell-state transfer via dissipative Liouvillian dynamics. Print athttps://arxiv.org/abs/2310.11381https://arxiv.org/abs/2310.11381(2023).
Shevchenko, S. N., Ashhab, S.&Nori, F. Landau–Zener–Stückelberg interferometry.Phys. Rep.492, 1–30 (2010)..
Landau, L. D. On the theory of transfer of energy at collisions II.Phys. Z. Sowjetunion2, 46–51 (1932)..
Zener, C. Non-adiabatic crossing of energy levels.Proc. R. Soc. A: Math. Phys. Eng. Sci.137, 696–702 (1932)..
Zhou, F. et al. Verifying Heisenberg's error-disturbance relation using a single trapped ion.Sci. Adv.2, e1600578 (2016)..
Xiong, T. P. et al. Experimental verification of a Jarzynski-related information-theoretic equality by a single trapped ion.Phys. Rev. Lett.120, 010601 (2018)..
Zhang, J. W. et al. Single-atom verification of the information-theoretical bound of irreversibility at the quantum level.Phys. Rev. Res.2, 033082 (2020)..
Quan, H. T. et al. Quantum thermodynamic cycles and quantum heat engines.Phys. Rev. E76, 031105 (2007)..
Benenti, G. et al. Fundamental aspects of steady-state conversion of heat to work at the nanoscale.Phys. Rep.694, 1–124 (2017)..
Liu, T. et al. Thermal photonics with broken symmetries Abstract eLight. 2https://doi.org/10.1186/s43593-022-00025-zhttps://doi.org/10.1186/s43593-022-00025-z(2022)
Lee, H. et al. Chiral exceptional point and coherent suppression of backscattering in silicon microring with low loss Mie scatterer Abstract eLight. 3https://doi.org/10.1186/s43593-023-00043-5https://doi.org/10.1186/s43593-023-00043-5(2023)
Huang, R. et al. Exceptional photon blockade: Engineering photon blockade with chiral exceptional points.Laser Photon. Rev.16, 2100430 (2022)..
Wang, W. C. et al. Observation ofPT-symmetric quantum coherence in a single-ion system.Phys. Rev. A103, L020201 (2021)..
Cao, Q. T. et al. Experimental demonstration of spontaneous chirality in a nonlinear microresonator.Phys. Rev. Lett.118, 033901 (2017)..
Chen, W. J. et al. Quantum jumps in the non-Hermitian dynamics of a superconducting qubit.Phys. Rev. Lett.127, 140504 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution