1.State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China
2.Beijing Advanced Innovation Center for Integrated Circuits, 100084 Beijing, China
Chen Wang (chenwang0101@tsinghua.edu.cn)
Published:31 July 2024,
Published Online:29 June 2024,
Received:16 September 2023,
Revised:09 April 2024,
Accepted:15 May 2024
Scan QR Code
Wu, Y. F. et al. Emerging probing perspective of two-dimensional materials physics: terahertz emission spectroscopy. Light: Science & Applications, 13, 1278-1298 (2024).
Wu, Y. F. et al. Emerging probing perspective of two-dimensional materials physics: terahertz emission spectroscopy. Light: Science & Applications, 13, 1278-1298 (2024). DOI: 10.1038/s41377-024-01486-2.
Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently
research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures
exceptional mechanical and optoelectronic properties
and the potential for applications in flexible electronics
sensing
and nanoelectronics. Specifically
these materials offer advantages such as tunable bandgap
high carrier mobility
wideband optical absorption
and relatively short carrier lifetime. By applying TES to investigate the 2D materials
their interfaces and heterostructures
rich information about the interplay among photons
charges
phonons and spins can be unfolded
which provides fundamental understanding for future applications. Thus it is timely to review the nonlinear processes underlying THz emission in 2D materials including optical rectification
photon-drag
high-order harmonic generation and spin-to-charge conversion
showcasing the rich diversity of the TES employed to unravel the complex nature of these materials. Typical applications based on THz emissions
such as THz lasers
ultrafast imaging and biosensors
are also discussed. Step further
we analyzed the unique advantages of spintronic terahertz emitters and the future technological advancements in the development of new THz generation mechanisms leading to advanced THz sources characterized by wide bandwidth
high power and integration
suitable for industrial and commercial applications. The continuous advancement and integration of TES with the study of 2D materials and heterostructures promise to revolutionize research in different areas
including basic materials physics
novel optoelectronic devices
and chips for post-Moore's era.
Banks, P. A., Kleist, E. M.&Ruggiero, M. T. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy.Nat. Rev. Chem.7, 480–495 (2023)..
Köhler, R. et al. Terahertz semiconductor-heterostructure laser.Nature417, 156–159 (2002)..
He, X. Y. et al. 3D Dirac semimetals supported tunable terahertz BIC metamaterials.Nanophotonics11, 4705–4714 (2022)..
Cheng, Y. et al. 3D Dirac semimetal supported thermal tunable terahertz hybrid plasmonic waveguides.Opt. Express31, 17201–17214 (2023)..
Wang, G. Q., Cao, W. H.&He, X. Y. 3D Dirac semimetal elliptical fiber supported THz tunable hybrid plasmonic waveguides.IEEE J. Sel. Top. Quantum Electron.29, 8400207 (2023)..
Fisher, A. et al. Single-pass high-efficiency terahertz free-electron laser.Nat. Photonics16, 441–447 (2022)..
Auston, D. H. et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media.Phys. Rev. Lett.53, 1555–1558 (1984)..
Fattinger, C.&Grischkowsky, D. Point source terahertz optics.Appl. Phys. Lett.53, 1480–1482 (1988)..
Hu, B. B.&Nuss, M. C. Imaging with terahertz waves.Opt. Lett.20, 1716–1718 (1995)..
O'Hara, J.&Grischkowsky, D. Quasi-optic terahertz imaging.Opt. Lett.26, 1918–1920 (2001)..
Tonouchi, M. Cutting-edge terahertz technology.Nat. Photonics1, 97–105 (2007)..
Zeitler, J. A.&Gladden, L. F. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms.Eur. J. Pharmaceutics Biopharmaceutics71, 2–22 (2009)..
Jepsen, P. U., Cooke, D. G.&Koch, M. Terahertz spectroscopy and imaging—modern techniques and applications.Laser Photonics Rev.5, 124–166 (2011)..
Amini, T. et al. A review of feasible applications of THz waves in medical diagnostics and treatments.J. Lasers Med. Sci.12, e92 (2021)..
Leitenstorfer, A. et al. The 2023 terahertz science and technology roadmap.J. Phys. D: Appl. Phys.56, 223001 (2023)..
Khan, K. et al. Recent developments in emerging two-dimensional materials and their applications.J. Mater. Chem. C8, 387–440 (2020)..
Chang, C. et al. Recent progress on two-dimensional materials.Acta Phys. Chim. Sin.37, 2108017 (2021)..
Zhang, Z. W. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices.Science357, 788–792 (2017)..
Prabhu, P., Jose, V.&Lee, J. M. Design strategies for development of TMD-based heterostructures in electrochemical energy systems.Matter2, 526–553 (2020)..
Jin, J. et al. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion.Nanoscale13, 19740–19770 (2021)..
Kim, G., Song, S.&Jariwala, D. Spatially controlled two-dimensional quantum heterostructures.Mater. Res. Lett.11, 327–346 (2023)..
Sun, J. W. et al. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.Nanoscale13, 4408–4419 (2021)..
Duan, X. D. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions.Nat. Nanotechnol.9, 1024–1030 (2014)..
Guo, Y. Z.&Robertson, J. Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures.Appl. Phys. Lett.108, 233104 (2016)..
Ko, K. Y. et al. High-performance gas sensor using a large-area WS2xSe2-2xalloy for low-power operation wearable applications.ACS Appl. Mater. Interfaces10, 34163–34171 (2018)..
Lee, C. H. et al. Design of p-WSe2/n-Ge heterojunctions for high-speed broadband photodetectors.Adv. Funct. Mater.32, 2107992 (2022)..
Chen, Y. F. et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection.Sci. Adv.8, eabq1781 (2022)..
Li, D. et al. Electronic gap characterization at mesoscopic scale via scanning probe microscopy under ambient conditions.Nat. Commun.13, 4648 (2022)..
Nugera, F. A. et al. Bandgap engineering in 2D lateral heterostructures of transition metal dichalcogenides via controlled alloying.Small18, 2106600 (2022)..
Du, W. et al. Ultrafast modulation of Exciton–Plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system.ACS Photonics6, 2832–2840 (2019)..
Duan, X. D. et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges.Chem. Soc. Rev.44, 8859–8876 (2015)..
Wang, C., Huang, Y.&Duan, X. F. Enhanced electrical characteristics of black phosphorus by polyaniline and protonic acid surface doping. In:Proc. IEEE 17th International Conference on Nanotechnology453–455 (IEEE, 2017)https://doi.org/10.1109/NANO.2017.8117384https://doi.org/10.1109/NANO.2017.8117384..
Zhang, S. M. et al. Lateral layered semiconductor multijunctions for novel electronic devices.Chem. Soc. Rev.51, 4000–4022 (2022)..
Tan, W. C. et al. in2D Semiconductor Materials and Devices(eds Chi, D., Goh, K. E. J.&Wee, A. T. S.) 251–312 (Elsevier, 2020).
Wu, H. et al. A field-effect approach to directly profiling the localized states in monolayer MoS2.Sci. Bull.64, 1049–1055 (2019)..
Huang, G. Y. et al. All-optical reconfigurable excitonic charge states in monolayer MoS2.Nano Lett.23, 1514–1521 (2023)..
Zheng, D. et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2.Nano Lett.17, 3809–3814 (2017)..
Wang, C. et al. Monolayer atomic crystal molecular superlattices.Nature555, 231–236 (2018)..
Kong, W. et al. Path towards graphene commercialization from lab to market.Nat. Nanotechnol.14, 927–938 (2019)..
Geim, A. K.&Grigorieva, I. V. Van der Waals heterostructures.Nature499, 419–425 (2013)..
Liu, Y., Huang, Y.&Duan, X. F. Van der Waals integration before and beyond two-dimensional materials.Nature567, 323–333 (2019)..
Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement.Nature614, 88–94 (2023)..
Zhou, Z. J. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures.Nature621, 499–505 (2023)..
Liu, C. et al. Controllable van der Waals gaps by water adsorption.Natu. Nanotechnol.(in the press).
Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors.Nature625, 276–281 (2024)..
Wu, F. et al. Vertical MoS2transistors with sub-1-nm gate lengths.Nature603, 259–264 (2022)..
Zhu, K. C. et al. Hybrid 2D-CMOS microchips for memristive applications.Nature618, 57–62 (2023)..
O'Brien, K. P. et al. Process integration and future outlook of 2D transistors.Nat. Commun.14, 6400 (2023)..
Shen, Y. et al. The trend of 2D transistors toward integrated circuits: scaling down and new mechanisms.Adv. Mater.34, 2201916 (2022)..
Joksas, D. et al. Memristive, spintronic, and 2D-materials-based devices to improve and complement computing hardware.Adv. Intell. Syst.4, 2200068 (2022)..
Zhu, E. B., Zhang, Z. W.&Wang, C. Editorial: emerging chip materials and devices for post Moore's era.Front. Mater.10, 1224537 (2023)..
Goel, N.&Kumar, M. 2D materials for terahertz application.Nano Express2, 031001 (2021)..
Huang, Y. Y. et al. Terahertz surface emission from layered MoS2crystal: competition between surface optical rectification and surface photocurrent surge.J. Phys. Chem. C.122, 481–488 (2018)..
Yao, Z. H. et al. Interface properties probed by active THz surface emission in graphene/SiO2/Si heterostructures.ACS Appl. Mater. Interfaces10, 35599–35606 (2018)..
Zheng, W. et al. Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface.AIP Adv.6, 075105 (2016)..
Ma, E. Y. et al. Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission.Sci. Adv.5, eaau0073 (2019)..
Liu, X. J. et al. Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic-inorganic perovskite multiple quantum wells.Nat. Commun.11, 323 (2020)..
Kumar, N. et al. Investigation of terahertz emission from BiVO4/Au thin film interface.J. Infrared Millim. Terahertz Waves36, 1033–1042 (2015)..
Leitenstorfer, A. et al. Femtosecond high-field transport in compound semiconductors.Phys. Rev. B61, 16642–16652 (2000)..
Kushnir, K. et al. Ultrafast zero-bias photocurrent in GeS nanosheets: promise for photovoltaics.ACS Energy Lett.2, 1429–1434 (2017)..
Du, W. Y. et al. Photodoping of graphene/silicon van der Waals heterostructure observed by terahertz emission spectroscopy.Appl. Phys. Lett.117, 081106 (2020)..
Bagsican, F. R. G. et al. Terahertz excitonics in carbon nanotubes: exciton autoionization and multiplication.Nano Lett.20, 3098–3105 (2020)..
Hangyo, M., Nagashima, T.&Nashima, S. Spectroscopy by pulsed terahertz radiation.Meas. Sci. Technol.13, 1727–1738 (2002)..
Dragoman, D.&Dragoman, M. Terahertz fields and applications.Prog. Quantum Electron.28, 1–66 (2004)..
Bera, A. et al. Review of recent progress on THz spectroscopy of quantum materials: superconductors, magnetic and topological materials.Eur. Phys. J. Spec. Top.230, 4113–4139 (2021)..
Yamamoto, K.&Ishida, H. Optical theory applied to infrared spectroscopy.Vibrational Spectrosc.8, 1–36 (1994)..
Beard, M. C.&Schmuttenmaer, C. A. Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments.J. Chem. Phys.114, 2903–2909 (2001)..
Lee, W. J. et al. Na-dependent ultrafast carrier dynamics of CdS/Cu(In, Ga)Se2measured by optical pump-terahertz probe spectroscopy.J. Phys. Chem. C.119, 20231–20236 (2015)..
Han, P., Wang, X. K.&Zhang, Y. Time-resolved terahertz spectroscopy studies on 2D Van der Waals materials.Adv. Optical Mater.8, 1900533 (2020)..
Ohta, K. et al. Probing charge carrier dynamics in porphyrin-based organic semiconductor thin films by time-resolved THz spectroscopy.J. Phys. Chem. B121, 10157–10165 (2017)..
Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope.Nat. Photonics7, 620–625 (2013)..
Cocker, T. L. et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging.Nature539, 263–267 (2016)..
Yoshida, S. et al. Subcycle transient scanning tunneling spectroscopy with visualization of enhanced terahertz near field.ACS Photonics6, 1356–1364 (2019)..
Yoshida, S. et al. Terahertz scanning tunneling microscopy for visualizing ultrafast electron motion in nanoscale potential variations.ACS Photonics8, 315–323 (2021)..
Pizzuto, A. et al. Nonlocal time-resolved terahertz spectroscopy in the near field.ACS Photonics8, 2904–2911 (2021)..
Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures.Nat. Nanotechnol.12, 207–211 (2017)..
Liewald, C. et al. All-electronic terahertz nanoscopy.Optica5, 159–163 (2018)..
Pizzuto, A., Ma, P. C.&Mittleman, D. M. Near-field terahertz nonlinear optics with blue light.Light Sci. Appl.12, 96 (2023)..
Aghamiri, N. A. et al. Hyperspectral time-domain terahertz nano-imaging.Opt. Express27, 24231–24242 (2019)..
Huang, Y. Y. et al. Surface optical rectification from layered MoS2Crystal by THz time-domain surface emission spectroscopy.ACS Appl. Mater. Interfaces9, 4956–4965 (2017)..
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2.Nano Lett.10, 1271–1275 (2010)..
Si, K. Y. et al. Terahertz surface emission from layered semiconductor WSe2.Appl. Surf. Sci.448, 416–423 (2018)..
Zhang, L. H. et al. Polarized THz emission from in-plane dipoles in monolayer tungsten disulfide by linear and circular optical rectification.Adv. Optical Mater.7, 1801314 (2019)..
Fan, Z. Y. et al. Terahertz surface emission from MoSe2at the monolayer limit.ACS Appl. Mater. Interfaces12, 48161–48169 (2020)..
Yue, X. Y. et al. Real-time observation of the buildup of polaron in α-FAPbI3.Nat. Commun.14, 917 (2023)..
Maysonnave, J. et al. Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses.Nano Lett.14, 5797–5802 (2014)..
Shi, L. K. et al. Geometric photon-drag effect and nonlinear shift current in centrosymmetric crystals.Phys. Rev. Lett.126, 197402 (2021)..
Bahk, Y. M. et al. Plasmon enhanced terahertz emission from single layer graphene.ACS Nano8, 9089–9096 (2014)..
Obraztsov, P. A. et al. Photon-drag-induced terahertz emission from graphene.Phys. Rev. B90, 241416 (2014)..
Zhu, L. et al. Enhanced polarization-sensitive terahertz emission from vertically grown graphene by a dynamical photon drag effect.Nanoscale9,10301–10311 (2017)..
Zhu, L. P. et al. Circular-photon-drag-effect-induced elliptically polarized terahertz emission from vertically grown graphene.Phys. Rev. Appl.12, 044063 (2019)..
Hamh, S. Y. et al. Helicity-dependent photocurrent in a Bi2Se3thin film probed by terahertz emission spectroscopy.Phys. Rev. B94, 161405 (2016)..
Song, Q. et al. Intensity-tunable terahertz radiation from tin selenide.J. Lumin.235, 118008 (2021)..
Cheng, L. et al. Giant photon momentum locked THz emission in a centrosymmetric Dirac semimetal.Sci. Adv.9, eadd7856 (2023)..
Zhang et al. Generation and control of ultrafast circular photon drag current in multilayer PtSe2revealed via terahertz emission.Adv. Optical Mater.11, 2201881 (2023)..
Bala Murali Krishna, M. et al. Terahertz photoconductivity and photocarrier dynamics in few-layer hBN/WS2van der Waals heterostructure laminates.Semicond. Sci. Technol.33, 084001 (2018)..
Ryzhii, V. et al. Far-infrared and terahertz emitting diodes based on graphene/black-P and graphene/MoS2heterostructures.Opt. Express28, 24136–24151 (2020)..
Song, F. C. et al. Ultrafast drift current terahertz emission amplification in the monolayer WSe2/Si heterostructure.J. Phys. Chem. Lett.13, 11398–11404 (2022)..
Yao, Z. H. et al. Interfacial THz generation from graphene/Si mixed-dimensional van der Waals heterostructure.Nanoscale11, 16614–16620 (2019)..
Yang, J. et al. Identifying the intermediate free-carrier dynamics across the charge separation in monolayer MoS2/ReSe2heterostructures.ACS Nano15, 16760–16768 (2021)..
Li, S. H.&Li, J. S. Terahertz modulator a using CsPbBr3perovskite quantum dots heterostructure.Appl. Phys. B124, 224 (2018)..
Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures.Nat. Nanotechnol.8, 256–260 (2013)..
Tong, M. Y. et al. Enhanced terahertz radiation by efficient spin-to-charge conversion in Rashba-mediated Dirac surface states.Nano Lett.21, 60–67 (2021)..
Meineke, C. et al. Scalable high-repetition-rate sub-half-cycle terahertz pulses from spatially indirect interband transitions.Light Sci. Appl.11, 151 (2022)..
Li, X. et al. Highly efficient and ultrafast terahertz modulation in perovskite hybrid structure.ACS Appl. Electron. Mater.4, 1832–1840 (2022)..
Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions.Nature561, 507–511 (2018)..
Kovalev, S. et al. Electrical tunability of terahertz nonlinearity in graphene.Sci. Adv.7, eabf9809 (2021)..
Kovalev, S. et al. Non-perturbative terahertz high-harmonic generation in the three-dimensional Dirac semimetal Cd3As2.Nat. Commun.11, 2451 (2020)..
Lim, J. et al. Efficient generation of extreme terahertz harmonics in three-dimensional Dirac semimetals.Phys. Rev. Res.2, 043252 (2020)..
Germanskiy, S. et al. Ellipticity control of terahertz high-harmonic generation in a Dirac semimetal.Phys. Rev. B106, L081127 (2022)..
Schmid, C. P. et al. Tunable non-integer high-harmonic generation in a topological insulator.Nature593, 385–390 (2021)..
Tielrooij, K. J. et al. Milliwatt terahertz harmonic generation from topological insulator metamaterials.Light Sci. Appl.11, 315 (2022)..
Liu, H. Z. et al. High-harmonic generation from an atomically thin semiconductor.Nat. Phys.13, 262–265 (2017)..
Taya, H., Hongo, M.&Ikeda, T. N. Analytical WKB theory for high-harmonic generation and its application to massive Dirac electrons.Phys. Rev. B104, L140305 (2021)..
Huisman, T. J. et al. Femtosecond control of electric currents in metallic ferromagnetic heterostructures.Nat. Nanotechnol.11, 455–458 (2016)..
Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation.Nat. Photonics10, 483–488 (2016)..
Cheng, L. et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2.Nat. Phys.15, 347–351 (2019)..
Wang, X. B. et al. Ultrafast spin-to-charge conversion at the surface of topological insulator thin films.Adv. Mater.30, 1802356 (2018)..
Chen, X. H. et al. Generation and control of terahertz spin currents in topology-induced 2D ferromagnetic Fe3GeTe2Bi2Te3heterostructures.Adv. Mater.34, 2106172 (2022)..
Kong, D. Y. et al. Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations.Adv. Opt. Mater.7, 1900487 (2019)..
Cong, K. K. et al. Coherent control of asymmetric spintronic terahertz emission from two-dimensional hybrid metal halides.Nat. Commun.12, 5744 (2021)..
Agarwal, P. et al. Electric-field control of nonlinear THz spintronic emitters.Nat. Commun.13, 4072 (2022)..
Tong, M. Y. et al. Light-driven spintronic heterostructures for coded terahertz emission.ACS Nano16, 8294–8300 (2022)..
Lu, S. Y. et al. Smith–Purcell radiation from highly mobile carriers in 2D quantum materials.Laser Photonics Rev.17, 2300002 (2023)..
Riccardi, E. et al. Short pulse generation from a graphene-coupled passively mode-locked terahertz laser.Nat. Photonics17, 607–614 (2023)..
Dong, J. L. et al. Single-shot ultrafast terahertz photography.Nat. Commun.14, 1704 (2023)..
Bai, Z. Y. et al. Near-field terahertz sensing of HeLa cells and pseudomonas based on monolithic integrated metamaterials with a spintronic terahertz emitter.ACS Appl. Mater. Interfaces12, 35895–35902 (2020)..
Yang, Y. H. et al. Terahertz topological photonics for on-chip communication.Nat. Photonics14, 446–451 (2020)..
Zhao, Y. et al. A 0.56 THz phase-locked frequency synthesizer in 65 nm CMOS technology.IEEE J. Solid-State Circuits51, 3005–3019 (2016)..
Sengupta, K., Nagatsuma, T.&Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems.Nat. Electron.1, 622–635 (2018)..
Rouzegar, R. et al. Broadband spintronic terahertz source with peak electric fields exceeding 1.5 MV/cm.Phys. Rev. Appl.19, 034018 (2023)..
Abdukayumov, K. et al. Atomic-layer controlled THz spintronic emission from epitaxially grown two dimensional PtSe2/ferromagnet heterostructures. Preprint athttps://arxiv.org/abs/2305.06895https://arxiv.org/abs/2305.06895(2023)..
Wang, S. J. et al. Flexible generation of structured terahertz fields via programmable exchange-biased spintronic emitters. Preprint athttps://arxiv.org/abs/2311.11499https://arxiv.org/abs/2311.11499(2023).
Fischer, B. M., Helm, H.&Jepsen, P. U. Chemical recognition with broadband THz spectroscopy.Proc. IEEE95, 1592–1604 (2007)..
Blank, V., Thomson, M. D.&Roskos, H. G. Spatio-spectral characteristics of ultra-broadband THz emission from two-colour photoexcited gas plasmas and their impact for nonlinear spectroscopy.N. J. Phys.15, 075023 (2013)..
Jeong, J. H. et al. High-power broadband organic THz generator.Sci. Rep.3, 3200 (2013)..
Zouaghi, W. et al. Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications.Eur. J. Phys.34, S179–S199 (2013)..
D'Angelo, F. et al. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.Opt. Express22, 12475–12485 (2014)..
Regensburger, S. et al. Broadband THz detection from 0.1 to 22 THz with large area field-effect transistors.Opt. Express23, 20732–20742 (2015)..
Seifert, T. S. et al. Spintronic sources of ultrashort terahertz electromagnetic pulses.Appl. Phys. Lett.120, 180401 (2022)..
Tarekegne, A. T. et al. Terahertz time-domain spectroscopy of zone-folded acoustic phonons in 4H and 6H silicon carbide.Opt. Express27, 3618–3628 (2019)..
Fan, J. P.&Cheng, Y. Z. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave.J. Phys. D: Appl. Phys.53, 025109 (2020)..
Hooper, I. R. et al. High efficiency photomodulators for millimeter wave and THz radiation.Sci. Rep.9, 18304 (2019)..
Porterfield, D. W. High-efficiency terahertz frequency triplers. In:Proc. 2007 IEEE/MTT-S International Microwave Symposium337–340 (IEEE, 2007).
He, T. et al. High-efficiency THz modulator based on phthalocyanine-compound organic films.Appl. Phys. Lett.106, 053303 (2015)..
Ouchi, T. et al. Terahertz imaging system for medical applications and related high efficiency terahertz devices.J. Infrared Millim. Terahertz Waves35, 118–130 (2014)..
Bakhtiari, F., Esmaeilzadeh, M.&Ghafary, B. Terahertz radiation with high power and high efficiency in a magnetized plasma.Phys. Plasmas24, 073112 (2017)..
Ou, H. L. et al. Tunable terahertz metamaterial for high-efficiency switch application.Results Phys.16, 102897 (2020)..
Banerjee, A. et al. Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor.J. Appl. Phys.125, 214502 (2019)..
Samanta, D. et al. Tunable graphene nanopatch antenna design for on-chip integrated terahertz detector arrays with potential application in cancer imaging.Nanomedicine16, 1035–1047 (2021)..
Lu, X. Y. et al. Integrated intelligent electromagnetic radiator design for future THz communication: a review.Chin. J. Electron.31, 499–515 (2022)..
Sarkar, P. et al. Review on the evolution of 6G and terahertz communication for highspeed information processing.Bull. Russian Acad. Sci.: Phys.86, S166–S170 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution