1.Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
2.Institut für Halbleiteroptik und Funktionelle Grenzflächen, Center for Integrated Quantum Science and Technology (IQST) and SCoPE, University of Stuttgart, Stuttgart, Germany
3.Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
4.Laboratorium für Nano- und Quantenengineering, Leibniz Universität Hannover, Schneiderberg 39, 30167 Hannover, Germany
Fei Ding (fei.ding@fkp.uni-hannover.de)
Published:31 October 2024,
Published Online:02 July 2024,
Received:11 April 2024,
Accepted:16 May 2024
Scan QR Code
Yang, J. Z. et al. High-rate intercity quantum key distribution with a semiconductor single-photon source. Light: Science & Applications, 13, 2114-2123 (2024).
Yang, J. Z. et al. High-rate intercity quantum key distribution with a semiconductor single-photon source. Light: Science & Applications, 13, 2114-2123 (2024). DOI: 10.1038/s41377-024-01488-0.
Quantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers. The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss. Semiconductor quantum dots (QDs) are a promising building block for quantum communication applications because of the deterministic emission of single photons with high brightness and low multiphoton contribution. Here we report on the first intercity QKD experiment using a bright deterministic single photon source. A BB84 protocol based on polarisation encoding is realised using the high-rate single photons in the telecommun
ication C-band emitted from a semiconductor QD embedded in a circular Bragg grating structure. Utilising the 79 km long link with 25.49 dB loss (equivalent to 130 km for the direct-connected optical fibre) between the German cities of Hannover and Braunschweig
a record-high secret key bits per pulse of 4.8 × 10
−5
with an average quantum bit error ratio of ~ 0.65% are demonstrated. An asymptotic maximum tolerable loss of 28.11 dB is found
corresponding to a length of 144 km of standard telecommunication fibre. Deterministic semiconductor sources therefore challenge state-of-the-art QKD protocols and have the potential to excel in measurement device independent protocols and quantum repeater applications.
Wehner, S., Elkouss, D.&Hanson, R. Quantum internet: a vision for the road ahead.Science362, eaam9288 (2018)..
Gyongyosi, L.&Imre, S. Advances in the quantum internet.Commun. ACM65, 52–63 (2022)..
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels.Phys. Rev. Lett.70, 1895–1899 (1993)..
Boschi, D., Branca, S., Martini, F. D., Hardy, L.&Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels.Phys. Rev. Lett.80, 1121–1125 (1998)..
Bouwmeester, D. et al. Experimental quantum teleportation.Nature390, 575–579 (1997)..
Soeparno, H.&Perbangsa, A. S. Cloud quantum computing concept and development: a systematic literature review.Proc. Comput. Sci.179, 944–954 (2021)..
Taleb, N.&Mohamed, E. A. Cloud computing trends: a literature review.Acad. J. Interdiscip. Stud.9, 91 (2020)..
Qian, T., Bringewatt, J., Boettcher, I., Bienias, P.&Gorshkov, A. V. Optimal measurement of field properties with quantum sensor networks.Phys. Rev. A103, l030601 (2021)..
Ge, W., Jacobs, K., Eldredge, Z., Gorshkov, A. V.&Foss-Feig, M. Distributed quantum metrology with linear networks and separable inputs.Phys. Rev. Lett.121, 043604 (2018)..
Aaronson, S.&Chen, L. Complexity-theoretic foundations of quantum supremacy experiments.arXivhttps://doi.org/10.48550/arXiv.1612.05903https://doi.org/10.48550/arXiv.1612.05903(2017)..
Preskill, J. Quantum computing in the nisq era and beyond.Quantum2, 79 (2018)..
Zhong, H. -S. et al. Quantum computational advantage using photons.Science370, 1460–1463 (2020)..
Lo, H. -K., Curty, M.&Tamaki, K. Secure quantum key distribution.Nat. Photon.8, 595–604 (2014)..
Rivest, R. L., Shamir, A.&Adleman, L. A method for obtaining digital signatures and public-key cryptosystems.Commun. ACM21, 120–126 (1978)..
Chen, J. -P. et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas.Nat. Photon.15, 570–575 (2021)..
Liu, Y. et al. Experimental twin-field quantum key distribution over 1000 km fiber distance.Phys. Rev. Lett.130, 210801 (2023)..
Bedington, R., Arrazola, J. M.&Ling, A. Progress in satellite quantum key distribution.npj Quant. Inf.3, 30 (2017)..
Lu, C. -Y., Cao, Y., Peng, C. -Z.&Pan, J. -W. Micius quantum experiments in space.Rev. Mod. Phys.94, 035001 (2022)..
Scarani, V. et al. The security of practical quantum key distribution.Rev. Mod. Phys.81, 1301–1350 (2009)..
Briegel, H. -J., Dür, W., Cirac, J. I.&Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication.Phys. Rev. Lett.81, 5932–5935 (1998)..
Xu, F., Ma, X., Zhang, Q., Lo, H. -K.&Pan, J. -W. Secure quantum key distribution with realistic devices.Rev. Mod. Phys.92, 025002 (2020)..
Schneeloch, J. et al. Introduction to the absolute brightness and number statistics in spontaneous parametric down-conversion.J. Opt.21, 043501 (2019)..
Hwang, W. -Y. Quantum key distribution with high loss: toward global secure communication.Phys. Rev. Lett.91, 057901 (2003)..
Lu, C. -Y.&Pan, J. -W. Quantum-dot single-photon sources for the quantum internet.Nat. Nanotechnol.16, 1294–1296 (2021)..
Vajner, D. A., Rickert, L., Gao, T., Kaymazlar, K.&Heindel, T. Quantum communication using semiconductor quantum dots.Adv. Quant. Technol.5, 2100116 (2022)..
Couteau, C. et al. Applications of single photons to quantum communication and computing.Nat. Rev. Phys.5, 326–338 (2023)..
Ferreira da Silva, T. et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits.Phys. Rev. A88, 052303 (2013)..
Owen, K. A. Towards mdi qkd using quantum dot single photon sources. MSc thesishttps://prism.ucalgary.ca/items/0332ba90-c08e-4737-828d-332dfc1d02fdhttps://prism.ucalgary.ca/items/0332ba90-c08e-4737-828d-332dfc1d02fd(2021).
Zhou, Y. -H. et al. Measurement-device-independent quantum key distribution via quantum blockade.Sci. Rep.8, 4115 (2018)..
Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions.Nat. Nanotechnol.18, 257–263 (2023)..
Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons.Science354, 434–437 (2016)..
Alléaume, R. et al. Experimental open-air quantum key distribution with a single-photon source.N. J. Phys.6, 92–92 (2004)..
Rau, M. et al. Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principle experiment.N. J. Phys.16, 043003 (2014)..
Xiang, Z. -H. et al. Long-term transmission of entangled photons from a single quantum dot over deployed fiber.Sci. Rep.9, 4111 (2019)..
Basset, F. B. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot.Sci. Adv.7, eabe6379 (2021)..
Schimpf, C. et al. Quantum cryptography with highly entangled photons from semiconductor quantum dots.Sci. Adv.7, eabe8905 (2021)..
Zahidy, M. et al. Quantum key distribution using deterministic single-photon sources over a field-installed fibre link.npj Quant. Inf.10, 2 (2023)..
Nawrath, C. et al. Bright source of purcell-enhanced, triggered, single photons in the telecom c-band.Adv. Quant. Technol.6, 2300111 (2023)..
Bennett, C. H.&Brassard, G. Quantum cryptography: public key distribution and coin tossing.Theor. Comput. Sci.560, 7–11 (2014)..
Waks, E., Santori, C.&Yamamoto, Y. Security aspects of quantum key distribution with sub-poisson light.Phys. Rev. A66, 042315 (2002)..
Gottesman, D., Lo, H. -K., Lütkenhaus, N.&Preskill, J. Security of quantum key distribution with imperfect devices.Quant. Inf. Comput.4, 325–360 (2004)..
Cai, R. Y. Q.&Scarani, V. Finite-key analysis for practical implementations of quantum key distribution.N. J. Phys.11, 045024 (2009)..
Bozzio, M. et al. Enhancing quantum cryptography with quantum dot single-photon sources.npj Quant. Inf.8, 104 (2022)..
Vyvlecka, M. et al. Robust excitation of c-band quantum dots for enhanced quantum communication.Appl. Phys. Lett.123, 174001 (2023)..
Yin, H. -L. et al. Tight security bounds for decoy-state quantum key distribution.Sci. Rep.10, 14312 (2020)..
Morrison, C. L. et al. Single-emitter quantum key distribution over 175 km of fibre with optimised finite key rates.Nat. Commun.14, 3573 (2023)..
Tomamichel, M., Martinez-Mateo, J., Pacher, C.&Elkouss, D. Fundamental finite key limits for one-way information reconciliation in quantum key distribution.Quant. Inf. Process.16, 280 (2017)..
Bunandar, D., Govia, L. C. G., Krovi, H.&Englund, D. Numerical finite-key analysis of quantum key distribution.npj Quant. Inf.6, 104(2020)..
Ester, P. et al. p-shell rabi-flopping and single photon emission in an InGaAs/GaAs quantum dot.Phys. E: Low. -Dimens. Syst. Nanostruct.40, 2004–2006 (2008)..
Gao, T. et al. A quantum key distribution testbed using a plug&play telecom-wavelength single-photon source.Appl. Phys. Rev.9, 011412 (2022)..
Schlehahn, A. et al. An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency.APL Photon.1, 011301 (2016)..
Shooter, G. et al. 1ghz clocked distribution of electrically generated entangled photon pairs.Opt. Express28, 36838–36848 (2020)..
Sasaki, M. et al. Field test of quantum key distribution in the tokyo QKD network.Opt. Express19, 10387–10409 (2011)..
Liao, S. -K. et al. Satellite-relayed intercontinental quantum network.Phys. Rev. Lett.120, 030501 (2018)..
Zhu, D. et al. A hybrid encryption scheme for quantum secure video conferencing combined with blockchain.Mathematics10, 3037 (2022)..
Rickert, L., Kupko, T., Rodt, S., Reitzenstein, S.&Heindel, T. Optimized designs for telecom-wavelength quantum light sources based on hybrid circular bragggratings.Opt. Express27, 36824–36837 (2019)..
Ma, C. et al. Circular photonic crystal grating design for charge-tunable quantum light sources in the telecom c-band.Opt. Express32, 14789–14800 (2024)..
Tomm, N. et al. A bright and fast source of coherent single photons.Nat. Nanotechnol.16, 399–403 (2021)..
McCree, A.&Barnwell, T. A mixed excitation LPC vocoder model for low bit rate speech coding.IEEE Trans. Speech Audio Process.3, 242–250 (1995)..
Takemoto, K. et al. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors.Sci. Rep.5, 14383 (2015)..
Jayakumar, H. et al. Time-bin entangled photons from a quantum dot.Nat. Commun.5, 4251 (2014)..
Huber, T. et al. Coherence and degree of time-bin entanglement from quantum dots.Phys. Rev. B93, 201301 (2016)..
Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication c band.Phys. Rev. Appl.13, 054052 (2020)..
Ginés, L. et al. Time-bin entangled photon pairs from quantum dots embedded in a self-aligned cavity.Opt. Express29, 4174–4180 (2021)..
Takemoto, K. et al. Transmission experiment of quantum keys over 50 km using high-performance quantum-dot single-photon source at 1.5 μm wavelength.Appl. Phys. Express3, 092802 (2010)..
Intallura, P. M. et al. Quantum key distribution using a triggered quantum dot source emitting near 1.3μm.Appl. Phys. Lett.91, 161103 (2007)..
Soujaeff, A. et al. Quantum key distribution at 1550 nm using a pulse heralded single photon source.Opt. Express15, 726–734 (2007)..
Li, W. et al. High-rate quantum key distribution exceeding 110 mb s–1.Nat. Photon.17, 416–421 (2023)..
Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source.Appl. Phys. Lett.112, 093106 (2018)..
Lo, H. -K., Chau, H. F.&Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security.J. Cryptol.18, 133–165 (2004)..
Sasaki, M. Quantum networks: where should we be heading?Quant. Sci. Technol.2, 020501 (2017)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution