1.Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
2.Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
3.International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
4.Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
Magdalena Grzeszczyk (magda@nus.edu.sg)
Maciej Koperski (msemaci@nus.edu.sg)
Published:31 August 2024,
Published Online:08 July 2024,
Received:04 November 2023,
Revised:08 May 2024,
Accepted:21 May 2024
Scan QR Code
Grzeszczyk, M. et al. Electroluminescence from pure resonant states in hBN-based vertical tunneling junctions. Light: Science & Applications, 13, 1557-1564 (2024).
Grzeszczyk, M. et al. Electroluminescence from pure resonant states in hBN-based vertical tunneling junctions. Light: Science & Applications, 13, 1557-1564 (2024). DOI: 10.1038/s41377-024-01491-5.
Defect centers in wide-band-gap crystals have garnered interest for their potential in applications among optoelectronic and sensor technologies. However
defects embedded in highly insulating crystals
like diamond
silicon carbide
or aluminum oxide
have been notoriously difficult to excite electrically due to their large internal resistance. To address this challenge
we realized a new paradigm of exciting defects in vertical tunneling junctions based on carbon centers in hexagonal boron nitride (hBN). The rational design of the devices via van der Waals technology enabled us to raise and control optical processes related to defect-to-band and intradefect electroluminescence. The fundamental understanding of the tunneling events was based on the transfer of the electronic wave function amplitude between resonant defect states in hBN to the metallic state in graphene
which leads to dramatic changes in the characteristics of electrons due to different band structures of constituent materials. In our devices
the decay of electrons via tunneling pathways competed with radiative recombination
resulting in an unprecedented degree of tuneability of carrier dynamics due to the significant sensitivity of the characteristic tunneling times on the thickness and structure of the barrier. This enabled us to achieve a high-efficiency electrical excitation of intradefect transitions
exceeding by several orders of magnitude the efficiency of optical excitation in the sub-band-gap regime. This work represents a significant advancement towards a universal and scalable platform for electrically driven devices utilizing defect centers in wide-band-gap crystals with properties modulated via activation of different tunneling mechanisms at a level of device engineering.
Heremans, F. J., Yale, C. G.&Awschalom, D. D. Control of spin defects in wide-bandgap semiconductors for quantum technologies.Proc. IEEE104, 2009–2023 (2016). 10.1109/JPROC. 2016.2561274..
Castelletto, S.&Boretti, A. Silicon carbide color centers for quantum applications.J. Phys.: Photonics2, 022001 (2020). 10.1088/2515-7647/ab77a2..
Diler, B. et al. Coherent control and high-fidelity readout of chromium ions in commercial silicon carbide.npj Quantum Inf.6, 11 (2020). 10.1038/s41534-020-0247-7..
Redman, D. A. et al. Spin dynamics and electronic states of N-Vcenters in diamond by EPR and four-wave-mixing spectroscopy.Phys. Rev. Lett.67, 3420–3423 (1991). 10.1103/PhysRevLett. 67.3420..
Fuchs, G. D. et al. Excited-state spectroscopy using single spin manipulation in diamond.Phys. Rev. Lett.101, 117601 (2008). 10.1103/PhysRevLett. 101.117601..
Hanson, R., Gywat, O.&Awschalom, D. D. Room-temperature manipulation and decoherence of a single spin in diamond.Phys. Rev. B74, 161203 (2006). 10.1103/PhysRevB. 74.161203..
Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond.Science314, 281–285 (2006). 10.1126/science. 1131871..
Gordon, L. et al. Quantum computing with defects.MRS Bull.38, 802–807 (2013). 10.1557/mrs. 2013.206..
Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond.Science316, 1312–1316 (2007). 10.1126/science. 1139831..
Aharonovich, I., Tetienne, J. P.&Toth, M. Quantum emitters in hexagonal boron nitride.Nano Lett.22, 9227–9235 (2022). 10.1021/acs. nanolett. 2c03743..
Tran, T. T. et al. Quantum emission from hexagonal boron nitride monolayers.Nat. Nanotechnol.11, 37–41 (2016). 10.1038/nnano. 2015.242..
Koperski, M. et al. Towards practical applications of quantum emitters in boron nitride.Sci. Rep.11, 15506 (2021). 10.1038/s41598-021-93802-8..
Koperski, M. et al. Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles.Nanophotonics6, 1289–1308 (2017). 10.1515/nanoph-2016-0165..
Koperski, M., Nogajewski, K.&Potemski, M. Single photon emitters in boron nitride: more than a supplementary material.Opt. Commun.411, 158–165 (2018). pii/S0030401817310039..
Chen, Y. L. et al. Annealing of blue quantum emitters in carbon-doped hexagonal boron nitride.Appl. Phys. Lett.123, 041902 (2023). 10.1063/5.0155311..
Chijioke, A. D. et al. The ruby pressure standard to 150 GPa.J. Appl. Phys.98, 114905 (2005). 10.1063/1.2135877..
Gottscholl, A. et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors.Nat. Commun.12, 4480 (2021). 10.1038/s41467-021-24725-1..
Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers.Science276, 2012–2014 (1997). 10.1126/science. 276.5321.2012..
Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond.Nature455, 644–647 (2008). 10.1038/nature07279..
Degen, C. L., Reinhard, F.&Cappellaro, P. Quantum sensing.Rev. Mod. Phys.89, 035002 (2017). 10.1103/RevModPhys. 89.035002..
Dolde, F. et al. Electric-field sensing using single diamond spins.Nat. Phys.7, 459–463 (2011). 10.1038/nphys1969..
Laraoui, A. et al. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe.Nat. Commun.6, 8954 (2015). 10.1038/ncomms9954..
Singh, A., Manjanath, A.&Singh, A. K. Engineering defect transition-levels through the van der Waals heterostructure.J. Phys. Chem. C.122, 24475–24480 (2018). 10.1021/acs. jpcc. 8b08082..
Watanabe, K., Taniguchi, T.&Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal.Nat. Mater.3, 404–409 (2004). 10.1038/nmat1134..
Wu, D. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation.ACS Nano15, 10119–10129 (2021). 10.1021/acsnano. 1c02007..
Huang, P. et al. Carbon and vacancy centers in hexagonal boron nitride.Phys. Rev. B106, 014107 (2022). 10.1103/PhysRevB. 106.014107..
Song, S. B. et al. Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures.Nat. Commun.12, 7134 (2021). 10.1038/s41467-021-27524-w..
Moon, S. et al. Hexagonal boron nitride for next-generation photonics and electronics.Adv. Mater.35, 2204161 (2023). 10.1002/adma. 202204161..
Liu, Y. et al. Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors.J. Phys.: Condens. Matter34, 183001 (2022). 10.1088/1361-648X/ac5310..
Lohrmann, A. et al. Single-photon emitting diode in silicon carbide.Nat. Commun.6, 7783 (2015). 10.1038/ncomms8783..
Khramtsov, I. A., Vyshnevyy, A. A.&Fedyanin, D. Y. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide.npj Quantum Inf.4, 15 (2018). 10.1038/s41534-018-0066-2..
Chang, L. L., Esaki, L.&Tsu, R. Resonant tunneling in semiconductor double barriers.Appl. Phys. Lett.24, 593–595 (1974). 10.1063/1.1655067..
Koperski, M. et al. Midgap radiative centers in carbon-enriched hexagonal boron nitride.Proc. Natl Acad. Sci. USA117, 13214–13219 (2020). 10.1073/pnas. 2003895117..
Onodera, M. et al. Carbon annealed HPHT-hexagonal boron nitride: exploring defect levels using 2D materials combined through van der Waals interface.Carbon167, 785–791 (2020). pii/S0008622320304735..
Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers.Nano Lett.12, 1707–1710 (2012). pii/S0008622320304735..
Kubota, Y. et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure.Science317, 932–934 (2007). 10.1126/science. 1144216..
Qiu, Z. et al. Atomic structure of carbon centres in hBN: towards engineering of single photon sources. arXiv preprint arXiv: 2110.07842https://doi.org/10.48550/arXiv.2110.07842https://doi.org/10.48550/arXiv.2110.07842(2021)
Badrtdinov, D. I. et al. Dielectric environment sensitivity of carbon centers in hexagonal boron nitride.Small19, 2300144 (2023). 10.1002/smll. 202300144..
Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film.J. Appl. Phys.34, 1793–1803 (1963). 10.1063/1.1702682..
Harada, N.&Kuroda, S. Lifetime of resonant state in a resonant tunneling system.Jpn. J. Appl. Phys.25, L871 (1986). 10.1143/JJAP. 25. L871..
Rieger, W. et al. Defect-related optical transitions in GaN.Phys. Rev. B54, 17596–17602 (1996). 10.1103/PhysRevB. 54.17596..
Fowler, R. H.&Nordheim, L. Electron emission in intense electric fields.Proc. R. Soc. A Math. Phys.119, 173–181 (1928). 10.1098/rspa.1928.0091..
Hattori, Y. et al. Determination of carrier polarity in Fowler–Nordheim tunneling and evidence of fermi level pinning at the hexagonal boron nitride/metal interface.ACS Appl. Mater. Interfaces10, 11732–11738 (2018). 10.1021/acsami. 7b18454..
Tamarat, P. et al. Stark shift control of single optical centers in diamond.Phys. Rev. Lett.97, 083002 (2006). 10.1103/PhysRevLett. 97.083002..
Noh, G. et al. Stark tuning of single-photon emitters in hexagonal boron nitride.Nano Lett.18, 4710–4715 (2018). 10.1021/acs. nanolett. 8b01030..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution