1.Dept. of Physics, Chung-Ang University, Seoul, Korea
2.Dept. of Electronics, Universidad de Alcalá, Madrid, Spain
Kwang Yong Song (songky@cau.ac.kr)
Miguel Gonzalez-Herraez (miguel.gonzalezh@uah.es)
Published:31 August 2024,
Published Online:02 July 2024,
Received:26 January 2024,
Revised:18 May 2024,
Accepted:30 May 2024
Scan QR Code
Youn, J. H. et al. Brillouin expanded time-domain analysis based on dual optical frequency combs. Light: Science & Applications, 13, 1534-1544 (2024).
Youn, J. H. et al. Brillouin expanded time-domain analysis based on dual optical frequency combs. Light: Science & Applications, 13, 1534-1544 (2024). DOI: 10.1038/s41377-024-01499-x.
Brillouin Optical Time-Domain Analysis (BOTDA) is a widely-used distributed optical fiber sensing technology employing pulse-modulated pump waves for local information retrieval of the Brillouin gain or loss spectra. The spatial resolution of BOTDA systems is intrinsically linked to pulse duration
so high-resolution measurements demand high electronic bandwidths inversely proportional to the resolution. This paper introduces Brillouin Expanded Time-Domain Analysis (BETDA) as a modified BOTDA system
simultaneously achieving high spatial resolution and low detection bandwidth. Utilizing two optical frequency combs (OFCs) with different frequency intervals as pump and probe
local Brillouin gain spectra are recorded by their spectral beating traces in an expanded time domain. A 2-cm-long hotspot located in a 230 m single-mode fiber is successfully measured in the time domain with a detection bandwidth of less than 100 kHz using dual OFCs with tailored spectral phase
line spacing
and bandwidth.
Hartog, A. H. An Introduction to Distributed Optical Fibre Sensors. (Boca Raton: CRC Press, 2017).
Bao, X. Y., Zhou, Z. C.&Wang, Y. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhancedSBS for temperature, strain and acoustic wave detection.PhotoniX2, 14 (2021)..
Wang, C. Y. et al. Chaos Raman distributed optical fiber sensing.Light Sci. Appl.12, 213 (2023)..
Kim, Y. H. et al. Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers.Opt. Express24, 21399–21406 (2016)..
Lu, Y. L. et al. Distributed vibration sensor based on coherent detection of phase-OTDR.J. Lightwave Technol.28, 3243–3249 (2010)..
Chow, D. M. et al. Distributed forward Brillouin sensor based on local light phase recovery.Nat. Commun.9, 2990 (2018)..
Zadok, A. et al. SBS-based fiber sensors.Semiconductors Semimet.110, 1–52 (2022)..
Horiguchi, T.&Tateda, M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory.J. Lightwave Technol.7, 1170–1176 (1989)..
Alahbabi, M. N., Cho, Y. T.&Newson, T. P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification.J. Optical Soc. Am. B22, 1321–1324 (2005)..
Hotate, K.&Hasegawa, T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation—.IEICE Trans. Electron.E83-C, 405–412 (2000)..
Mizuno, Y. et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR).Opt. Express16, 12148–12153 (2008)..
Garus, D. et al. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis.Opt. Lett.21, 1402–1404 (1996)..
Minardo, A. et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR).Opt. Express24, 29994–30001 (2016)..
Soto, M. A. et al. Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers.J. Lightwave Technol.32, 152–162 (2014)..
Urricelqui, J., Sagues, M.&Loayssa, A. Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses.Opt. Express23, 30448–30458 (2015)..
Dong, Y. K., Chen, L.&Bao, X. Y. Time-division multiplexing-based BOTDA over 100km sensing length.Opt. Lett.36, 277–279 (2011)..
Kishida, K., Li, C. H.&Nishiguchi, K. I. Pulse pre-pump method for cm-order spatial resolution of BOTDA. Proceedings of SPIE 5855, 17th International Conference on Optical Fibre Sensors. Bruges, Belgium: SPIE, 2005, 559–562.
Li, W. H. et al. Differential pulse-width pair BOTDA for high spatial resolution sensing.Opt. Express16, 21616–21625 (2008)..
Beugnot, J. C. et al. Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing.Opt. Express19, 7381–7397 (2011)..
Song, K. Y. et al. Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating.J. Lightwave Technol.28, 2062–2067 (2010)..
Peled, Y., Motil, A.&Tur, M. Fast Brillouin optical time domain analysis for dynamic sensing.Opt. Express20, 8584–8591 (2012)..
Zhou, D. W. et al. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement.Light Sci. Appl.7, 32 (2018)..
Murray, J. B., Cerjan, A.&Redding, B. Distributed Brillouin fiber laser sensor.Optica9, 80–87 (2022)..
Soto, M. A., Ramírez, J. A.&Thévenaz, L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration.Nat. Commun.7, 10870 (2016)..
Bao, X. et al. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses.Opt. Lett.24, 510–512 (1999)..
Soriano-Amat, M. et al. Time-expanded phase-sensitive optical time-domain reflectometry.Light Sci. Appl.10, 51 (2021)..
Fernández-Ruiz, M. R. et al. Time expansion in distributed optical fiber sensing.J. Lightwave Technol.41, 3305–3315 (2023)..
Coddington, I., Newbury, N.&Swann, W. Dual-comb spectroscopy.Optica3, 414–426 (2016)..
Wang, Q. et al. Dual-comb photothermal spectroscopy.Nat. Commun.13, 2181 (2022)..
Alem, M., Soto, M. A.&Thévenaz, L. Analytical model and experimental verification of the critical power for modulation instability in optical fibers.Opt. Express23, 29514–29532 (2015)..
Brown, A. W., Colpitts, B. G.&Brown, K. Dark-Pulse Brillouin optical time-domain sensor with 20 mm spatial resolution.J. Lightwave Technol.25, 381–386 (2007)..
Dong, Y. K. et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair.Appl. Opt.51, 1229–1235 (2012)..
Song, K. Y. et al. High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation.Opt. Lett.36, 2062–2064 (2011)..
Tapiador, M. et al. Definition of a FPGA-based SoC architecture for PRBS transmission in optical spectroscopy.IEEE Trans. Instrum. Meas.72, 2007109 (2023)..
Voskoboinik, A. et al. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA).Opt. Express19, B842–B847 (2011)..
Agrawal, G. P. Nonlinear Fiber Optics. 3rd edn. (San Diego: Academic Press, 2001).
Lopez-Gil, A. et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection and orthogonal probe sidebands.J. Lightwave Technol.33, 2605–2610 (2015)..
Youn, J. H.&Song, K. Y. Brillouin optical correlation domain analysis using orthogonally polarized probe sidebands.J. Lightwave Technol.40, 894–899 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution