1.Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China
2.Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
3.Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
4.Department of Physics and Lakeside AR/VR Laboratory, International Joint Research Center for Optoelectronic and Engineering Research, Yunnan University, Kunming 650091, China
5.Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
6.Graduate School of Organic Materials Science, Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa 992–8510, Japan
Jianhua Zhang (jhzhang@shu.edu.cn)
Kai Wang (wangk@sustech.edu.cn)
Xuyong Yang (yangxy@shu.edu.cn)
Published:31 July 2024,
Published Online:12 June 2024,
Received:03 December 2023,
Revised:19 May 2024,
Accepted:30 May 2024
Scan QR Code
Kong, L. M. et al. Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent. Light: Science & Applications, 13, 1364-1371 (2024).
Kong, L. M. et al. Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent. Light: Science & Applications, 13, 1364-1371 (2024). DOI: 10.1038/s41377-024-01500-7.
Light-emitting diodes (LEDs) based on perovskite semiconductor materials with tunable emission wavelength in visible light range as well as narrow linewidth are potential competitors among current light-emitting display technologies
but still suffer from severe instability driven by electric field. Here
we develop a stable
efficient and high-color purity hybrid LED with a tandem structure by combining the perovskite LED and the commercial organic LED technologies to accelerate the practical application of perovskites. Perovskite LED and organic LED with close photoluminescence peak are selected to maximize photon emission without photon reabsorption and to achieve the narrowed emission spectra. By designing an efficient interconnecting layer with p-type interface doping that provides
good opto-electric coupling and reduces Joule heating
the resulting green emitting hybrid LED shows a narrow linewidth of around 30 nm
a peak luminance of over 176
000 cd m
−2
a maximum external quantum efficiency of over 40%
and an operational half-lifetime of over 42
000 h.
Kovalenko, M. V., Protesescu, L.&Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals.Science358, 745–750 (2017)..
Lu, M. et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays.Adv. Funct. Mater.29, 1902008 (2019)..
Han, T. H. et al. A roadmap for the commercialization of perovskite light emitters.Nat. Rev. Mater.7, 757–777 (2022)..
Wang, H. R. et al. A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes.Joule4, 1977–1987 (2020)..
Jiang, Y. Z. et al. Synthesis-on-substrate of quantum dot solids.Nature612, 679–684 (2022)..
Wang, C. H. et al. Dimension control of in situ fabricated CsPbClBr2nanocrystal films toward efficient blue light-emitting diodes.Nat. Commun.11, 6428 (2020)..
Song, Y. H. et al. Planar defect–free pure red perovskite light-emitting diodes via metastable phase crystallization.Sci. Adv.8, eabq2321 (2022)..
Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes.Science350, 1222–1225 (2015)..
Lin, K. B. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent.Nature562, 245–248 (2018)..
Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs.Nature591, 72–77 (2021)..
Ma, D. X. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs.Nature599, 594–598 (2021)..
Wang, Y. K. et al. In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids.Adv. Mater.34, 2200854 (2022)..
Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures.Nature562, 249–253 (2018)..
Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation.Adv. Mater.33, 2103268 (2021)..
Chen, Z. M. et al. Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%.Joule5, 456–466 (2021)..
Liu, Y. J. et al. Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes.Nat. Commun.13, 7425 (2022)..
Jiang, J. et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations.Adv. Mater.34, 2204460 (2022)..
Han, D. Y. et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs.Nature622, 493–498 (2023)..
Yang, F. et al. Rational adjustment to interfacial interaction with carbonized polymer dots enabling efficient large-area perovskite light-emitting diodes.Light Sci. Appl.12, 119 (2023)..
Guo, B. B. et al. Ultrastable near-infrared perovskite light-emitting diodes.Nat. Photonics16, 637–643 (2022)..
Liu, Y. et al. Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix.J. Am. Chem. Soc.143, 15606–15615 (2021)..
Wang, H. R. et al. Trifluoroacetate induced small-grained CsPbBr3perovskite films result in efficient and stable light-emitting devices.Nat. Commun.10, 665 (2019)..
Chen, W. J. et al. Highly bright and stable single-crystal perovskite light-emitting diodes.Nat. Photon.17, 401–407 (2023)..
Du, P. P. et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement.Nat. Commun.12, 4751 (2021)..
Fu, Y. et al. Scalable all-evaporation fabrication of efficient light-emitting diodes with hybrid 2D–3D perovskite nanostructures.Adv. Funct. Mater.30, 2002913 (2020)..
Du, P. P. et al. Vacuum-deposited blue inorganic perovskite light-emitting diodes.ACS Appl. Mater. Interfaces11, 47083–47090 (2019)..
Yang, X. Y. et al. Focus on perovskite emitters in blue light-emitting diodes.Light Sci. Appl.12, 177 (2023)..
Ko, Y. H. et al. Super ultra-high resolution liquid-crystal-display using perovskite quantum-dot functional color-filters.Sci. Rep.8, 12881 (2018)..
Ko, Y. H. et al. Environmentally friendly quantum-dot color filters for ultra-high-definition liquid crystal displays.Sci. Rep.10, 15817 (2020)..
Zhang, H., Su, Q.&Chen, S. M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission.Nat. Commun.11, 2826 (2020)..
Wang, R. et al. Minimizing energy barrier in intermediate connection layer for monolithic tandem WPeLEDs with wide color gamut.Adv. Funct. Mater.33, 2215189 (2023)..
Jia, Z. R. et al. Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells.Nat. Commun.14, 1236 (2023)..
Lee, H. D. et al. Valley-centre tandem perovskite light-emitting diodes.Nat. Nanotechnol.19, 624–631 (2024)..
Sun, S. Q. et al. Highly efficient hybrid perovskite/organic tandem white light emitting-diodes with external quantum efficiency exceeding 20.Adv. Funct. Mater.33, 2306549 (2023)..
Helander, M. G. et al. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility.Science332, 944–947 (2011)..
Hamwi, S. et al. The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes.Adv. Funct. Mater.20, 1762–1766 (2010)..
Xiao, X. T. et al. Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes.Commun. Mater.1, 81 (2020)..
Wu, Q. Q. et al. Efficient tandem quantum-dot LEDs enabled by an inorganic semiconductor-metal-dielectric interconnecting layer stack.Adv. Mater.34, 2108150 (2022)..
Woo, S. J., Kim, J. S.&Lee, T. W. Characterization of stability and challenges to improve lifetime in perovskite LEDs.Nat. Photonics15, 630–634 (2021)..
Kong, L. M. et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices.Nat. Commun.12, 1246 (2021)..
Neukom, M. T., Reinke, N. A.&Ruhstaller, B. Charge extraction with linearly increasing voltage: a numerical model for parameter extraction.Sol. Energy85, 1250–1256 (2011)..
Züfle, S. et al. An effective area approach to model lateral degradation in organic solar cells.Adv. Energy Mater.5, 1500835 (2015)..
Altazin, S. et al. Simulation of OLEDs with a polar electron transport layer.Org. Electron.39, 244–249 (2016)..
Ruhstaller, B. et al. InOptoelectronic Devices and Properties(ed. Sergiyenko, O.) (Intechopen, 2011).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution