1.Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
2.Octave Photonics, Louisville, CO 80027, USA
Daniel J Blumenthal (danb@ucsb.edu)
Published:31 August 2024,
Published Online:08 July 2024,
Received:15 February 2024,
Revised:01 June 2024,
Accepted:10 June 2024
Scan QR Code
Bose, D. et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light: Science & Applications, 13, 1565-1577 (2024).
Bose, D. et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light: Science & Applications, 13, 1565-1577 (2024). DOI: 10.1038/s41377-024-01503-4.
Heterogeneous and monolithic integration of the versatile low-loss silicon nitride platform with low-temperature materials such as silicon electronics and photonics
Ⅲ–Ⅴ compound semiconductors
lithium niobate
organics
and glasses has been inhibited by the need for high-temperature annealing as well as the need for different process flows for thin and thick waveguides. New techniques are needed to maintain the state-of-the-art losses
nonlinear properties
and CMOS-compatible processes while enabling this next generation of 3D silicon nitride integration. We report a significant advance in silicon nitride integrated photonics
demonstrating the lowest losses to date for an anneal-free process at a maximum temperature 250 ℃
with the same deuterated silane based fabrication flow
for nitride and oxide
for an order of magnitude ra
nge in nitride thickness without requiring stress mitigation or polishing. We report record low anneal-free losses for both nitride core and oxide cladding
enabling 1.77 dB m
-1
loss and 14.9 million Q for 80 nm nitride core waveguides
more than half an order magnitude lower loss than previously reported sub 300 ℃ process. For 800 nm-thick nitride
we achieve as good as 8.66 dB m
−1
loss and 4.03 million Q
the highest reported Q for a low temperature processed resonator with equivalent device area
with a median of loss and Q of 13.9 dB m
−1
and 2.59 million each respectively. We demonstrate laser stabilization with over 4 orders of magnitude frequency noise reduction using a thin nitride reference cavity
and using a thick nitride micro-resonator we demonstrate OPO
over two octave supercontinuum generation
and four-wave mixing and parametric gain with the lowest reported optical parametric oscillation threshold per unit resonator length. These results represent a significant step towards a uniform ultra-low loss silicon nitride homogeneous and heterogeneous platform for both thin and thick waveguides capable of linear and nonlinear photonic circuits and integration with low-temperature materials and processes.
Blumenthal, D. J. et al. Silicon nitride in silicon photonics.Proc. IEEE106, 2209–2231 (2018)..
Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit.Nature586, 538–542 (2020)..
Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits.Nat. Photonics14, 285–298 (2020)..
Wang, J. et al. Integrated photonic quantum technologies.Nat. Photonics14, 273–284 (2020)..
Meyer, D. H. et al. Assessment of Rydberg atoms for wideband electric field sensing.J. Phys. B53, 034001 (2020)..
Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18level.Nature506, 71–75 (2014)..
Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock.Optica6, 680–685 (2019)..
Petrov,A. A. et al. Features of magnetic field stabilization in caesium atomic clock for satellite navigation system.J. Phys. : Conf. Ser.1038, 012032 (2018)..
Ye, J., Kimble, H. J.&Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps.Science320, 1734–1738 (2008)..
Brodnik, G. M. et al. Optically synchronized fibre links using spectrally pure chip-scale lasers.Nat. Photonics15, 588–593 (2021)..
Ely, T. A. et al. Using the deep space atomic clock for navigation and science.IEEE Trans. Ultrason. Ferroelectr. Freq. Control65, 950–961 (2018)..
Dick, G. J. Local oscillator induced instabilities in trapped ion frequency standards. InProc. 19th Annual Precise Time and Time Interval Systems and Applications Meeting. ION, Redondo Beach 133–147 (1987).
Audoin, C., Candelier, V.&Diamarcq, N. A limit to the frequency stability of passive frequency standards due to an intermodulation effect.IEEE Trans. Instrum. Meas.40, 121–125 (1991)..
Huffman, T. A.Integrated Si3N4Waveguide Circuits for Single- and Multi-layer A. PhD thesis, University of California, Santa Barbara (2018)..
Briles, T. C. et al. Generating octave-bandwidth soliton frequency combs with compact low-power semiconductor lasers.Phys. Rev. Appl.14, 014006 (2020)..
Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths.Nat. Photonics17, 157–164 (2023)..
Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser.Nat. Photonics13, 60–67 (2019)..
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Qmicroresonators.Nat. Photonics15, 346–353 (2021)..
Chauhan, N. et al. Visible light photonic integrated Brillouin laser.Nat. Commun.12, 4685 (2021)..
Isichenko, A. et al. Chip-scale, sub-Hz fundamental sub-kHz integral linewidth 780 nm laser through self-injection-locking a Fabry–Perot laser to an ultra-highQintegrated resonator. Preprint athttps://doi.org/10.48550/arXiv.2307.04947https://doi.org/10.48550/arXiv.2307.04947(2023)..
Liu, K. et al. Integrated photonic molecule Brillouin laser with a high-power sub-100-mHz fundamental linewidth.Opt. Lett.49, 45–48 (2024)..
Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators.Science361, eaan8083 (2018)..
Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform.Nat. Commun.9, 3444 (2018)..
Wang, J. et al. Silicon nitride stress-optic microresonator modulator for optical control applications.Opt. Express30, 31816–31827 (2022)..
Alkhazraji, E. et al. Linewidth narrowing in self-injection-locked on-chip lasers.Light Sci. Appl.12, 162 (2023)..
Huffman, T. A. et al. Integrated resonators in an ultralow loss Si3N4/SiO2platform for multifunction applications.IEEE J. Sel. Top. Quantum Electron.24, 5900209 (2018)..
Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11instability.Optica5, 443–449 (2018)..
Spektor, G. et al. Universal visible emitters in nanoscale integrated photonics.Optica10, 871–879 (2023)..
Isichenko, A. et al. Photonic integrated beam delivery for a rubidium 3D magneto-optical trap.Nat. Commun.14, 3080 (2023)..
Tran, M. A. et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers.IEEE J. Sel. Top. Quantum Electron.26, 1500514 (2020)..
Verrinder, P. A. et al. Gallium arsenide photonic integrated circuit platform for tunable laser applications.IEEE J. Sel. Top. Quantum Electron.28, 6100109 (2022)..
Nicholes, S. C. et al. An 8 × 8 InP monolithic tunable optical router (MOTOR) packet forwarding chip.J. Lightwave Technol.28, 641–650 (2010)..
Shams-Ansari, A. et al. Reduced material loss in thin-film lithium niobate waveguides.APL Photonics7, 081301 (2022)..
Jung, H. et al. Tantala Kerr nonlinear integrated photonics.Optica8, 811–817 (2021)..
Zhao, Q. et al. Low-loss low thermo-optic coefficient Ta2O5on crystal quartz planar optical waveguides.APL Photonics5, 116103 (2020)..
Xiang, C. et al. High-performance silicon photonics using heterogeneous integration.IEEE J. Sel. Top. Quantum Electron.28, 8200515 (2022)..
Wong, M. S., Nakamura, S.&DenBaars, S. P. Review—progress in high performance Ⅲ-nitride micro-light-emitting diodes.ECS J. Solid State Sci. Technol.9, 015012 (2020)..
Gumyusenge, A.&Mei, J. High temperature organic electronics.MRS Adv.5, 505–513 (2020)..
DuPont.DuPontTMKapton®Summary of Propertieshttps://www.dupont.com/content/dam/dupont/amer/us/en/ei-transformation/public/documents/en/EI-10142_Kapton-Summary-of-Properties.pdfhttps://www.dupont.com/content/dam/dupont/amer/us/en/ei-transformation/public/documents/en/EI-10142_Kapton-Summary-of-Properties.pdf(2022)..
Mahajan, R. et al. Co-packaged photonics for high performance computing: status, challenges and opportunities.J. Lightwave Technol.40, 379–392 (2022)..
He, L. et al. Broadband athermal waveguides and resonators for datacom and telecom applications.Photonics Res.6, 987–990 (2018)..
Liu, K. et al. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing.Opt. Lett.47, 1855–1858 (2022)..
Puckett, M. W. et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth.Nat. Commun.12, 934 (2021)..
Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics.Opt. Express30, 6960–6969 (2022)..
Liu, K. et al. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator.Optica9, 770–775 (2022)..
Sharma, N., Hooda, M.&Sharma, S. K. Synthesis and characterization of LPCVD polysilicon and silicon nitride thin films for MEMS applications.J. Mater.2014, 954618 (2014)..
Osinsky, A. V. et al. Optical loss mechanisms in GeSiON planar waveguides.Appl. Phys. Lett.81, 2002–2004 (2002)..
Jin, W. et al. Deuterated silicon dioxide for heterogeneous integration of ultra-low-loss waveguides.Opt. Lett.45, 3340–3343 (2020)..
Okawachi, Y. et al. Chip-scale frequency combs for data communications in computing systems.Optica10, 977–995 (2023)..
Perez, E. F. et al. High-performance Kerr microresonator optical parametric oscillator on a silicon chip.Nat. Commun.14, 242 (2023)..
Yang, K. Y. et al. Bridging ultrahigh-Qdevices and photonic circuits.Nat. Photonics12, 297–302 (2018)..
Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold.Optica4, 619–624 (2017)..
Pfeiffer, M. H. P. et al. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides.IEEE J. Sel. Top. Quantum Electron.24, 6101411 (2018)..
Chia, X. X. et al. Optical characterization of deuterated silicon-rich nitride waveguides.Sci. Rep.12, 12697 (2022)..
Chia, X. X.&Tan, D. T. H. Deuterated SiNx: a low-loss, back-end CMOS-compatible platform for nonlinear integrated optics.Nanophotonics12, 1613–1631 (2023)..
Chiles, J. et al. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation.Opt. Lett.43, 1527–1530 (2018)..
Wu, Z. et al. Low-noise Kerr frequency comb generation with low temperature deuterated silicon nitride waveguides.Opt. Express29, 29557–29566 (2021)..
Xie, Y. et al. Soliton frequency comb generation in CMOS-compatible silicon nitride microresonators.Photonics Res.10, 1290–1296 (2022)..
Aihara, T. et al. Single soliton generation with deuterated SiN ring resonator fabricated at low temperature. InProc. 2022 Conference on Lasers and Electro-Optics Pacific Rim. (CLEOPR, Sapporo, 2022).
Chiles, J. et al. CMOS-compatible, low-loss deuterated silicon nitride photonic devices for optical frequency combs. InProc. Conference on Lasers and Electro-Optics(CLEO, San Jose, 2018).
Chia, X. X. et al. Low-power four-wave mixing in deuterated silicon-rich nitride ring resonators.J. Lightwave Technol.41, 3115–3130 (2023)..
Zhang, S. et al. Low-temperature sputtered ultralow-loss silicon nitride for hybrid photonic integration.Laser Photonics Reviews,18, 2300642 (2024)..
Bose, D., Wang, J.&Blumenthal, D. J. 250C Process for<2 dB/m ultra-low loss silicon nitride integrated photonic waveguides. InProc. Conference on Lasers and Electro-Optics(CLEO, San Jose, 2022).
Porcel, M. A. G. et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths.Opt. Express25, 1542–1554 (2017)..
Ye, Z. et al. Low-loss high-Qsilicon-rich silicon nitride microresonators for Kerr nonlinear optics.Opt. Lett.44, 3326–3329 (2019)..
Blumenthal, D. J. et al. Integrated photonics for low-power packet networking.IEEE J. Sel. Top. Quantum Electron.17, 458–471 (2011)..
Smit, M. et al. An introduction to InP-based generic integration technology.Semicond. Sci. Technol.29, 083001 (2014)..
Koos, C. et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration.J. Lightwave Technol.34, 256–268 (2016)..
Kohler, D. et al. Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics.Light Sci. Appl.10, 64 (2021)..
Moreira, R. et al. Optical interconnect for 3D integration of ultra-low loss planar lightwave circuits. InProc. Advanced Photonics 2013(IPRSN, Rio Grande, 2013).
Chauhan, N. et al. Photonic integrated Si3N4ultra-large-area grating waveguide MOT interface for 3D atomic clock laser cooling. InProc. 2019 Conference on Lasers and Electro-Optics(CLEO, San Jose, 2019)..
Zhou, J. et al. Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors.Sci. Rep.12, 5572 (2022)..
Fadley, C. S. X-ray photoelectron spectroscopy: progress and perspectives.J. Electron Spectrosc. Relat. Phenom.178-179, 2–32 (2010)..
Zhao, Q. et al. Integrated reference cavity with dual-mode optical thermometry for frequency correction.Optica8, 1481–1487 (2021)..
Di Domenico, G., Schilt, S.&Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape.Appl. Opt.49, 4801–4807 (2010)..
Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits.Nat. Commun.12, 2236 (2021)..
Gaeta, A. L., Lipson, M.&Kippenberg, T. J. Photonic-chip-based frequency combs.Nat. Photonics13, 158–169 (2019)..
Ikeda, K. et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides.Opt. Express16, 12987–12994 (2008)..
Aaltonen, T. et al. Ruthenium thin films grown by atomic layer deposition.Chem. Vapor Depos.9, 45–49 (2003)..
Mitchell, W. J. et al. Highly selective and vertical etch of silicon dioxide using ruthenium films as an etch mask.J. Vacuum Sci. Technol. A39, 043204 (2021)..
Maurya, D. K., Sardarinejad, A.&Alameh, K. Recent developments in R.F. magnetron sputtered thin films for pH sensing applications—an overview.Coatings4, 756–771 (2014)..
John, D. D.Etchless Core-definition Process for the Realization of Low Loss Glass Waveguides. PhD thesis, University of California, Santa Barbara (2012).
Frigg, A. et al. Optical frequency comb generation using low stress CMOS compatible reactive sputtered silicon nitride waveguides. InProc. SPIE 11364, Integrated Photonics Platforms: Fundamental Research, Manufacturing and Applications 113640N(SPIE, 2020).
Yang, C.&Pham, J. Characteristic study of silicon nitride films deposited by LPCVD and PECVD.Silicon10, 2561–2567 (2018)..
Hainberger, R. et al. PECVD silicon nitride optical waveguide devices for sensing applications in the visible and<1 µm near infrared wavelength region. InProc. SPIE 11031, Integrated Optics: Design, Devices, Systems, and Applications110310A (SPIE, V. Prague, 2019).
Dergez, D. et al. Fundamental properties of a-SiNx: H thin films deposited by ICP-PECVD for MEMS applications.Appl. Surf. Sci.284, 348–353 (2013)..
Ji, D. et al. Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits.Adv. Mater.31, 1806070 (2019)..
Shao, Z. et al. Ultra-low temperature silicon nitride photonic integration platform.Opt. Express24, 1865–1872 (2016)..
Blumenthal, D. J. Photonic integration for UV to IR applications.APL Photonics5, 020903 (2020)..
Ji, X. et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries.Laser Photon. Rev.17, 2200544 (2023)..
Golshani, N. et al. Low-loss, low-temperature PVD SiN waveguides. InProc. 2021 IEEE 17th International Conference on Group IV Photonics (GFP)1–2 (IEEE, Malaga, 2021).
Ye, Z. et al. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits.Photonics Res.11, 558–568 (2023)..
Sun, W. et al. A chip-integrated comb-based microwave oscillator. Preprint athttps://doi.org/10.48550/arXiv.2403.02828https://doi.org/10.48550/arXiv.2403.02828(2024).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution