无数据
1.Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
2.Octave Photonics, Louisville, CO 80027, USA
Daniel J Blumenthal (danb@ucsb.edu)
Received:15 February 2024,
Revised:01 June 2024,
Accepted:2024-06-10,
Published Online:08 July 2024,
Published:31 August 2024
Scan QR Code
Bose, D. et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light: Science & Applications, 13, 1565-1577 (2024).
Bose, D. et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light: Science & Applications, 13, 1565-1577 (2024). DOI: 10.1038/s41377-024-01503-4.
Heterogeneous and monolithic integration of the versatile low-loss silicon nitride platform with low-temperature materials such as silicon electronics and photonics
Ⅲ–Ⅴ compound semiconductors
lithium niobate
organics
and glasses has been inhibited by the need for high-temperature annealing as well as the need for different process flows for thin and thick waveguides. New techniques are needed to maintain the state-of-the-art losses
nonlinear properties
and CMOS-compatible processes while enabling this next generation of 3D silicon nitride integration. We report a significant advance in silicon nitride integrated photonics
demonstrating the lowest losses to date for an anneal-free process at a maximum temperature 250 ℃
with the same deuterated silane based fabrication flow
for nitride and oxide
for an order of magnitude ra
nge in nitride thickness without requiring stress mitigation or polishing. We report record low anneal-free losses for both nitride core and oxide cladding
enabling 1.77 dB m
-1
loss and 14.9 million Q for 80 nm nitride core waveguides
more than half an order magnitude lower loss than previously reported sub 300 ℃ process. For 800 nm-thick nitride
we achieve as good as 8.66 dB m
−1
loss and 4.03 million Q
the highest reported Q for a low temperature processed resonator with equivalent device area
with a median of loss and Q of 13.9 dB m
−1
and 2.59 million each respectively. We demonstrate laser stabilization with over 4 orders of magnitude frequency noise reduction using a thin nitride reference cavity
and using a thick nitride micro-resonator we demonstrate OPO
over two octave supercontinuum generation
and four-wave mixing and parametric gain with the lowest reported optical parametric oscillation threshold per unit resonator length. These results represent a significant step towards a uniform ultra-low loss silicon nitride homogeneous and heterogeneous platform for both thin and thick waveguides capable of linear and nonlinear photonic circuits and integration with low-temperature materials and processes.
Blumenthal, D. J. et al. Silicon nitride in silicon photonics. Proc. IEEE 106 , 2209–2231 (2018)..
Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586 , 538–542 (2020)..
Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits. Nat. Photonics 14 , 285–298 (2020)..
Wang, J. et al. Integrated photonic quantum technologies. Nat. Photonics 14 , 273–284 (2020)..
Meyer, D. H. et al. Assessment of Rydberg atoms for wideband electric field sensing. J. Phys. B 53 , 034001 (2020)..
Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10 −18 level. Nature 506 , 71–75 (2014)..
Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6 , 680–685 (2019)..
Petrov,A. A. et al. Features of magnetic field stabilization in caesium atomic clock for satellite navigation system. J. Phys. : Conf. Ser. 1038 , 012032 (2018)..
Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320 , 1734–1738 (2008)..
Brodnik, G. M. et al. Optically synchronized fibre links using spectrally pure chip-scale lasers. Nat. Photonics 15 , 588–593 (2021)..
Ely, T. A. et al. Using the deep space atomic clock f or navigation and science. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 , 950–961 (2018)..
Dick, G. J. Local oscillator induced instabilities in trapped ion frequency standards. In Proc. 19th Annual Precise Time and Time Interval Systems and Applications Meeting . ION, Redondo Beach 133–147 (1987).
Audoin, C., Candelier, V. & Diamarcq, N. A limit to the frequency stability of passive frequency standards due to an intermodulation effect. IEEE Trans. Instrum. Meas. 40 , 121–125 (1991)..
Huffman, T. A. Integrated Si 3 N 4 Waveguide Circuits for Single- and Multi-layer A . PhD thesis, University of California, Santa Barbara (2018)..
Briles, T. C. et al. Generating octave-bandwidth soliton frequency combs with compact low-power semiconductor lasers. Phys. Rev. Appl. 14 , 014006 (2020)..
Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photonics 17 , 157–164 (2023)..
Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics 13 , 60–67 (2019)..
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high- Q microresonators. Nat. Photonics 15 , 346–353 (2021)..
Chauhan, N. et al. Visible light photonic integrated Brillouin laser. Nat. Commun. 12 , 4685 (2021)..
Isichenko, A. et al. Chip-scale, sub-Hz fundamental sub-kHz integral linewidth 780 nm laser through self-injection-locking a Fabry–Perot laser to an ultra-high Q integrated resonator. Preprint at https://doi.org/10.48550/arXiv.2307.04947 https://doi.org/10.48550/arXiv.2307.04947 (2023)..
Liu, K. et al. Integrated photonic molecule Brillouin laser with a high-power sub-100-mHz fundamental linewidth. Opt. Lett. 49 , 45–48 (2024)..
Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators. Science 361 , eaan8083 (2018)..
Alexander, K. et a l. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9 , 3444 (2018)..
Wang, J. et al. Silicon nitride stress-optic microresonator modulator for optical control applications. Opt. Express 30 , 31816–31827 (2022)..
Alkhazraji, E. et al. Linewidth narrowing in self-injection-locked on-chip lasers. Light Sci. Appl. 12 , 162 (2023)..
Huffman, T. A. et al. Integrated resonators in an ultralow loss Si 3 N 4 /SiO 2 platform for multifunction applications. IEEE J. Sel. Top. Quantum Electron. 24 , 5900209 (2018)..
Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10 −11 instability. Optica 5 , 443–449 (2018)..
Spektor, G. et al. Universal visible emitters in nanoscale integrated photonics. Optica 10 , 871–879 (2023)..
Isichenko, A. et al. Photonic integrated beam delivery for a rubidium 3D magneto-optical trap. Nat. Commun. 14 , 3080 (2023)..
Tran, M. A. et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Top. Quantum Electron. 26 , 1500514 (2020)..
Verrinder, P. A. et al. Gallium arsenide photonic integrated circuit platform for tunable laser applications. IEEE J. Sel. Top. Quantum Electron. 28 , 6100109 (2022)..
Nicholes, S. C. et al. An 8 × 8 InP monolithic tunable optical router (MOTOR) packet forwarding chip. J. Lightwave Technol. 28 , 641–650 (2010)..
Shams-Ansari, A. et al. Reduced material loss in thin-film lithium niobate waveguides. APL Photonics 7 , 081301 (2022)..
Jung, H. et al. Tantala Kerr nonlinear integrated photonics. Optica 8 , 811–817 (2021)..
Zhao, Q. et al. Low-loss low thermo-optic coefficient Ta 2 O 5 on crystal quartz planar optical waveguides. APL Photonics 5 , 116103 (2020)..
Xiang, C. et al. High-performance silicon photonics using heteroge neous integration. IEEE J. Sel. Top. Quantum Electron. 28 , 8200515 (2022)..
Wong, M. S., Nakamura, S. & DenBaars, S. P. Review—progress in high performance Ⅲ-nitride micro-light-emitting diodes. ECS J. Solid State Sci. Technol. 9 , 015012 (2020)..
Gumyusenge, A. & Mei, J. High temperature organic electronics. MRS Adv. 5 , 505–513 (2020)..
DuPont. DuPont TM Kapton ® Summary of Properties https://www.dupont.com/content/dam/dupont/amer/us/en/ei-transformation/public/documents/en/EI-10142_Kapton-Summary-of-Properties.pdf https://www.dupont.com/content/dam/dupont/amer/us/en/ei-transformation/public/documents/en/EI-10142_Kapton-Summary-of-Properties.pdf (2022)..
Mahajan, R. et al. Co-packaged photonics for high performance computing: status, challenges and opportunities. J. Lightwave Technol. 40 , 379–392 (2022)..
He, L. et al. Broadband athermal waveguides and resonators for datacom and telecom applications. Photonics Res. 6 , 987–990 (2018)..
Liu, K. et al. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. Opt. Lett. 47 , 1855–1858 (2022)..
Puckett, M. W. et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun. 12 , 934 (2021)..
Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30 , 6960–6969 (2022)..
Liu, K. et al. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica 9 , 770–775 (2022)..
Sharma, N., Hooda, M. & Sharma, S. K. Synthesis and characterization of LPCVD polysilicon and silicon nitride thin films for MEMS applications. J. Mater. 2014 , 954618 (2014)..
Osinsky, A. V. et al. Optical loss mechanisms in GeSiON planar waveguides. Appl. Phys. Lett. 81 , 2002–2004 (2002)..
Jin, W. et al. Deuterated silicon dioxide for heterogeneous integration of ultra-low-loss waveguides. Opt. Lett. 45 , 3340–3343 (2020)..
Okawachi, Y. et al. Chip-scale frequency combs for data communications in computing systems. Optica 10 , 977–995 (2023)..
Perez, E. F. et al. High-performance Kerr microresonator optical parametric oscillator on a silicon chip. Nat. Commun. 14 , 242 (2023)..
Yang, K. Y. et al. Bridging ultrahigh- Q devices and photonic circuits. Nat. Photonics 12 , 297–302 (2018)..
Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4 , 619–624 (2017)..
Pfeiffer, M. H. P. et al. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quantum Electron. 24 , 6101411 (2018)..
Chia, X. X. et al. Optical characterization of deuterated silicon-rich nitride waveguides. Sci. Rep. 12 , 12697 (2022)..
Chia, X. X. & Tan, D. T. H. Deuterated SiN x : a low-loss, back-end CMOS-compatible platform for nonlinear integrated optics. Nanophotonics 12 , 1613–1631 (2023)..
Chiles, J. et al. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Opt. Lett. 43 , 1527–1530 (2018)..
Wu, Z. et al. Low-noise Kerr frequency comb generation with low temperature deuterated silicon nitride waveguides. Opt. Express 29 , 29557–29566 (2021)..
Xie, Y. et al. Soliton frequency comb generation in CMOS-compatible silicon nitride microresonators. Photonics Res. 10 , 1290–1296 (2022)..
Aihara, T. et al. Single soliton generation with deuterated SiN ring resonator fabricated at low temperature. In Proc. 2022 Conference on Lasers and Electro-Optics Pacific Rim . (CLEOPR, Sapporo, 2022).
Chiles, J. et al. CMOS-compatible, low-loss deuterated silicon nitride photonic devices for optical frequency combs. In Proc. Conference on Lasers and Electro-Optics (CLEO, San Jose, 2018).
Chia, X. X. et al. Low-power four-wave mixing in deuterated silicon-rich nitride ring resonators. J. Lightwave Technol. 41 , 3115–3130 (2023)..
Zhang, S. et al. Low-temperature sputtered ultralow-loss silicon nitride for hybrid photonic integration. Laser Photonics Reviews, 18 , 2300642 (2024)..
Bose, D., Wang, J. & Blumenthal, D. J. 250C Process for < 2 dB/m ultra-low loss silicon nitride integrated photonic waveguides. In Proc. Conference on Lasers and Electro-Optics (CLEO, San Jose, 2022).
Porcel, M. A. G. et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Opt. Express 25 , 1542–1554 (2017)..
Ye, Z. et al. Low-loss high- Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. Opt. Lett. 44 , 3326–3329 (2019)..
Blumenthal, D. J. et al. Integrated photonics for low-power packet networking. IEEE J. Sel. Top. Quantum Electron. 17 , 458–471 (2011)..
Smit, M. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29 , 083001 (2014)..
Koos, C. et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J. Lightwave Technol. 34 , 256–268 (2016)..
Kohler, D. et al. Biophotonic sensors with integrated Si 3 N 4 -organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light Sci. Appl. 10 , 64 (2021)..
Moreira, R. et al. Optical interconnect for 3D integration of ultra-low loss planar lightwave circuits. In Proc. Advanced Photonics 2013 (IPRSN, Rio Grande, 2013).
Chauhan, N. et al. Photonic integrated Si 3 N 4 ultra-large-area grating waveguide MOT interface for 3D atomic clock laser cooling. In Proc. 2019 Conference on Lasers and Electro-Optics (CLEO, San Jose, 2019)..
Zhou, J. et al. Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors. Sci. Rep. 12 , 5572 (2022)..
Fadley, C. S. X-ray photoelectron spect roscopy: progress and perspectives. J. Electron Spectrosc. Relat. Phenom. 178-179 , 2–32 (2010)..
Zhao, Q. et al. Integrated reference cavity with dual-mode optical thermometry for frequency correction. Optica 8 , 1481–1487 (2021)..
Di Domenico, G., Schilt, S. & Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 49 , 4801–4807 (2010)..
Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12 , 2236 (2021)..
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13 , 158–169 (2019)..
Ikeda, K. et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 16 , 12987–12994 (2008)..
Aaltonen, T. et al. Ruthenium thin films grown by atomic layer deposition. Chem. Vapor Depos. 9 , 45–49 (2003)..
Mitchell, W. J. et al. Highly selective and vertical etch of silicon dioxide using ruthenium films as an etch mask. J. Vacuum Sci. Technol. A 39 , 043204 (2021)..
Maurya, D. K., Sardarinejad, A. & Alameh, K. Recent developments in R.F. magnetron sputtered thin films for pH sensing applications—an overview. Coatings 4 , 756–771 (2014)..
John, D. D. Etchless Core-definition Process for the Realization of Low Loss Glass Waveguides . PhD thesis, University of California, Santa Barbara (2012).
Frigg, A. et al. Optical frequency comb generation using low stress CMOS compatible reactive sputtered silicon nitride waveguides. In Proc. SPIE 11364, Integrated Photonics Platforms: Fundamental Research, Manufacturing and Applications 113640N (SPIE, 2020).
Yang, C. & Pham, J. Characteristic study of silicon nitride films deposited by LPCVD and PECVD. Silicon 10 , 2561–2567 (2018)..
Hainberger, R. et al. PECVD silicon nitride optical waveguide devices for sensing applications in the visible and < 1 µm near infrared wavelength region. In Proc. SPIE 11031, Integrated Optics: Design, Devices, Systems, and Applications 110310A (SPIE, V. Prague, 2019).
Dergez, D. et al. Fundamental properties of a-SiN x : H thin films deposited by ICP-PECVD for MEMS applications. Appl. Surf. Sci. 284 , 348–353 (2013)..
Ji, D. et al. Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits. Adv. Mater. 31 , 1806070 (2019)..
Shao, Z. et al. Ultra-low temperature silicon nitride photonic integration platform. Opt. Express 24 , 1865–1872 (2016)..
Blumenthal, D. J. Photonic integration for UV to IR applications. APL Photonics 5 , 020903 (2020)..
Ji, X. et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries. Laser Photon. Rev. 17 , 2200544 (2023)..
Golshani, N. et al. Low-loss, low-temperature PVD SiN waveguides. In Proc. 2021 IEEE 17th International Conference on Group IV Photonics (GFP) 1–2 (IEEE, Malaga, 2021).
Ye, Z. et al. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photonics Res. 11 , 558–568 (2023)..
Sun, W. et al. A chip-integrated comb-based microwave oscillator. Preprint at https://doi.org/10.48550/arXiv.2403.02828 https://doi.org/10.48550/arXiv.2403.02828 (2024).
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution