1.Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
2.Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
Wang, C. W. & Wang, Q. J. Extending the detection limit: innovations in infrared quantum dot photodetectors reaching up to 18 μm. Light: Science & Applications, 13, 1445-1447 (2024).
DOI:
Wang, C. W. & Wang, Q. J. Extending the detection limit: innovations in infrared quantum dot photodetectors reaching up to 18 μm. Light: Science & Applications, 13, 1445-1447 (2024). DOI: 10.1038/s41377-024-01504-3.
Extending the detection limit: innovations in infrared quantum dot photodetectors reaching up to 18 μm
A regrowth method was used to synthesize large-sized colloidal quantum dots (CQDs). With the assistance of doping engineering
the synthesized CQD detectors demonstrate exceptional long-wavelength infrared detection performance
reaching up to 18 μm
significantly extending the spectral response limit for CQD-based infrared detectors. These detectors also achieve a reasonably high detectivity of 6.6 × 10
8
Jones.
关键词
Keywords
references
Kwan, D. et al. Recent trends in 8-14μm type-II superlattice infrared detectors.Infrared Phys. Technol.116, 103756 (2021)..
Rogalski, A. et al. InAsSb-based infrared photodetectors: thirty years later on.Sensors20, 7047 (2020)..
Eich, D. et al. Progress of MCT detector technology at AIM towards smaller pitch and lower dark current.J. Electron. Mater.46, 5448–5457 (2017)..
Rogalski, A. Infrared detectors: an overview.Infrared Phys. Technol.43, 187–210 (2002)..
Rossetti, R., Nakahara, S.&Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution.J. Chem. Phys.79, 1086–1088 (1983)..
Zhou, W. J. et al. Solution-processed upconversion photodetectors based on quantum dots.Nat. Electron.3, 251–258 (2020)..
Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors.Nature442, 180–183 (2006)..
Chen, M. L. et al. Mid-infrared intraband photodetector via high carrier mobility HgSe colloidal quantum dots.ACS Nano16, 11027–11035 (2022)..
Kagan, C. R. et al. Building devices from colloidal quantum dots.Science353, aac5523 (2016)..
Armstrong, G. The year dot.Nat. Chem.15, 1659–1659 (2023)..
Lu, H. P. et al. Infrared quantum dots: progress, challenges, and opportunities.ACS Nano13, 939–953 (2019)..
Ding, N. et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared.Light Sci. Appl.11, 91 (2022)..
Zhang, H. Z., Peterson, J. C.&Guyot-Sionnest, P. Intraband transition of HgTe nanocrystals for long-wave infrared detection at 12 μm.ACS Nano17, 7530–7538 (2023)..
Xue, X. M., Hao, Q.&Chen, M. L. Very long wave infrared quantum dot photodetector up to 18 μm.Light Sci. Appl.13, 89 (2024)..
Xue, X. M. et al. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction.Light Sci. Appl.12, 2 (2023)..
Palaferri, D. et al. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers.Nature556, 85–88 (2018)..
Liang, L. L. et al. Incoherent broadband mid-infrared detection with lanthanide nanotransducers.Nat. Photon.16, 712–717 (2022)..