Key Laboratory for Special Function Materials and Structural Design of the Ministry of Education, National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology of National Development and Reform Commission, Department of Materials Science, School of Materials and Energy, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu 730000, China
Yuhua Wang (wyh@lzu.edu.cn)
Takatoshi Seto (seto@lzu.edu.cn)
Published:31 August 2024,
Published Online:15 July 2024,
Received:04 February 2024,
Revised:04 June 2024,
Accepted:13 June 2024
Scan QR Code
Ma, X. L., Wang, Y. H. & Seto, T. Electrical stimulation for brighter persistent luminescence. Light: Science & Applications, 13, 1590-1601 (2024).
Ma, X. L., Wang, Y. H. & Seto, T. Electrical stimulation for brighter persistent luminescence. Light: Science & Applications, 13, 1590-1601 (2024). DOI: 10.1038/s41377-024-01507-0.
An immature understanding of the mechanisms of persistent luminescence (PersL) has hindered the development of new persistent luminescent materials (PersLMs) with increased brightness. In this regard
in-situ direct current (DC) electric field measurements were conducted on a layered structure composed of the SrAl
2
O
4
:Eu
2+
Dy
3+
phosphor
and an electrode. In this study
the photoluminescence (PL) and afterglow properties were investigated with respect to voltage by analyzing the current signal and thermoluminescence (TL) spectroscopy. The intensity of PersL increased due to a novel phenomenon known as "external electric field stimulated enhancement of initial brightness of afterglow". This dynamic process was illustrated via the use of a rate equation approach
where the electrons trapped by the ultra-shallow trap at 0.022 eV could be transferred through the conduction band during long afterglow. The afterglow intensity could reach 0.538 cd m
−2
at a 6 V electric voltage. The design of an electric field stimulation technique enables the enhancement of the intensity of PersLMs and provides a new perspective for exploring the fundamental mechanics of certain established PersLMs.
Li, Y., Gecevicius, M.&Qiu, J. R. Long persistent phosphors-from fundamentals to applications.Chem. Soc. Rev.45, 2090–2136 (2016)..
Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-Ⅱ imaging.Nat. Nanotechnol.16, 1011–1018 (2021)..
Matsuzawa, T. et al. A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+.J. Electrochem. Soc.143, 2670–2673 (1996)..
Yang, L. et al. Recent progress in inorganic afterglow materials: mechanisms, persistent luminescent properties, modulating methods, and bioimaging applications.Adv. Opt. Mater.11, 2370038 (2023)..
Mushtaq, U. et al. Persistent luminescent nanophosphors for applications in cancer theranostics, biomedical, imaging and security.Mater. Today Bio23, 100860 (2023)..
Wang, S. X., Song, Z.&Liu, Q. L. Recent progress in Ce3+/Eu2+-activated LEDs and persistent phosphors: focusing on the local structure and the electronic structure.J. Mater. Chem. C11, 48–96 (2023)..
Zhuang, Y. X. et al. A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors.Opt. Mater.36, 1907–1912 (2014)..
Wang, Y. H.&Wang, L. Defect states in Nd3+-doped CaAl2O4: Eu2+.J. Appl. Phys.101, 053108 (2007)..
Lin, Y. H. et al. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor.J. Mater. Sci. Lett.20, 1505–1506 (2001)..
Lin, Y. H. et al. Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors.Appl. Phys. Lett.81, 996–998 (2002)..
Zeng, W. et al. Design, synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+,Dy3+.J. Mater. Chem. C.1, 3004–3011 (2013)..
Wang, Z. Z. et al. Sunlight-activated yellow long persistent luminescence from Nb-doped Sr3SiO5:Eu2+for warm-color mark applications.J. Mater. Chem. C8, 1143–1150 (2020)..
Wang, X. X. et al. Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor.Mater. Chem. Phys.80, 1–5 (2003)..
Wang, S. X. et al. Enhanced performance of Sr2Si5N8:Eu2+red afterglow phosphor by co-doping with boron and oxygen.J. Lumin.204, 36–40 (2018)..
Xu, J.&Tanabe, S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective.J. Lumin.205, 581–620 (2019)..
Zhang, J. C. et al. Trap-controlled mechanoluminescent materials.Prog. Mater. Sci.103, 678–742 (2019)..
Van der Heggen, D. et al. Persistent luminescence in strontium aluminate: a roadmap to a brighter future.Adv. Funct. Mater.32, 2208809 (2022)..
Abbruscato, V. Optical and electrical properties of SrAl2O4: Eu2+.J. Electrochem. Soc.118, 930–933 (1971)..
Aitasalo, T. et al. Mechanisms of persistent luminescence in Eu2+, RE3+doped alkaline earth aluminates.J. Lumin.94-95, 59–63 (2001)..
Dorenbos, P. et al. Afterglow and thermoluminescence properties of Lu2SiO5:Ce scintillation crystals.J. Phys. Condens. Matter6, 4167–4180 (1994)..
Dorenbos, P. Mechanism of persistent luminescence in Eu2+and Dy3+codoped aluminate and silicate compounds.J. Electrochem. Soc.152, H107–H110 (2005)..
Clabau, F. et al. Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4with codopants Dy3+and B3+.Chem. Mater.17, 3904–3912 (2005)..
Ueda, J., Tanabe, S.&Nakanishi, T. Analysis of Ce3+luminescence quenching in solid solutions between Y3Al5O12and Y3Ga5O12by temperature dependence of photoconductivity measurement.J. Appl. Phys.110, 053102 (2011)..
Korthout, K. et al. Luminescence and x-ray absorption measurements of persistent SrAl2O4: Eu,Dy powders: evidence for valence state changes.Phys. Rev. B84, 085140 (2011)..
Joos, J. J. et al. Identification of Dy3+/Dy2+as electron trap in persistent phosphors.Phys. Rev. Lett.125, 033001 (2020)..
van der Heggen, D. et al. Strontium aluminate persistent luminescent single crystals: linear scaling of emission intensity with size is affected by reabsorption.J. Phys. Chem. Lett.14, 10151–10157 (2023)..
Bartosiewicz, K. et al. Towards deliberate design of persistent phosphors: a study of La-Ga admixing in LuAG: Ce crystals to engineer elemental homogeneity and carrier trap depths.J. Mater. Chem. C.11, 8850–8865 (2023)..
Kong, J. T.&Meijerink, A. Identification and quantification of charge transfer in CaAl2O4: Eu2+, Nd3+persistent phosphor.Adv. Opt. Mater.11, 2203004 (2023)..
Peng, F., Seto, T.&Wang, Y. H. First evidence of electron trapped Ln2+promoting afterglow on Eu2+, Ln3+activated persistent phosphor-example of BaZrSi3O9:Eu2+,Sm3+.Adv. Funct. Mater.33,, 2300721 (2023)..
Zeng, P. et al. Investigation of the long afterglow mechanism in SrAl2O4: Eu2+/Dy3+by optically stimulated luminescence and thermoluminescence.J. Lumin.199, 400–406 (2018)..
Luo, H., Bos, A. J. J.&Dorenbos, P. Controlled electron–hole trapping and de-trapping process in GdAlO3by valence band engineering.J. Phys. Chem. C.120, 5916–5925 (2016)..
Dorenbos, P. Ce3+5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds.J. Lumin.135, 93–104 (2013)..
Dorenbos, P. Modeling the chemical shift of lanthanide 4f electron binding energies.Phys. Rev. B85, 165107 (2012)..
Krumpel, A. H. et al. Lanthanide 4f-level location in AVO4:Ln3+(A = La, Gd, Lu) crystals.J. Phys. Condens. Matter21, 115503 (2009)..
Zhuang, Y. X. et al. X-ray-charged bright persistent luminescence in NaYF4: Ln(3+)@NaYF4nanoparticles for multidimensional optical information storage.Light Sci. Appl.10, 132 (2021)..
Li, L. P. et al. Mechanism of the trivalent lanthanides’ persistent luminescence in wide bandgap materials.Light Sci. Appl.11, 51 (2022)..
Liu, D. J. et al. Valence conversion and site reconstruction in near-infrared-emitting chromium-activated garnet for simultaneous enhancement of quantum efficiency and thermal stability.Light Sci. Appl.12, 248 (2023)..
Ma, S. W., Peng, Z. L.&Kitai, A. H. A CuO nanowire-based alternating current oxide powder electroluminescent device with high stability.Angew. Chem. Int. Ed.57, 11267–11272 (2018)..
Song, E. H. et al. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor.Nat. Commun.13, 2166 (2022)..
Dexter, D. L.&Schulman, J. H. Theory of concentration quenching in inorganic phosphors.J. Chem. Phys.22, 1063–1070 (1954)..
Yin, X. M. et al. Towards highly efficient NIR Ⅱ response up-conversion phosphor enabled by long lifetimes of Er3+.Nat. Commun.13, 6549 (2022)..
Qiao, J. W. et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes.Nat. Commun.10, 5267 (2019)..
Hölsä, J. et al. Electronic structure of the SrAl2O4:Eu2+persistent luminescence material.J. Rare Earths27, 550–554 (2009)..
Luo, J. L. et al. Photocurrent enhanced in UV-vis-NIR photodetector based on CdSe/CdTe core/shell nanowire arrays by piezo-phototronic effect.ACS Photonics7, 1461–1467 (2020)..
Liao, C. et al. Creating deep traps in yttrium aluminum garnet for long-term optical storage and afterglow-intensity-ratio-based temperature sensing.Laser & Photonics Reviews,https://doi.org/10.1002/lpor.202300924https://doi.org/10.1002/lpor.202300924(in the press)..
Chen, X. Z. et al. Trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence.Adv. Mater.33, 2008722 (2021)..
Poort, S. H. M., Blokpoel, W. P.&Blasse, G. Luminescence of Eu2+in barium and strontium aluminate and gallate.Chem. Mater.7, 1547–1551 (1995)..
Ueda, J. et al. Optical and optoelectronic analysis of persistent luminescence in Eu2+‐Dy3+codoped SrAl2O4ceramic phosphor.Phys. Status Solidi C.9, 2322–2325 (2012)..
Ma, X. L. et al. Design of efficient color-tunable long persistent luminescence phosphor BaGa2O4: Pr3+and its performance enhancement via a trap-induced strategy.J. Mater. Chem. C10, 1105–1117 (2022)..
Wang, S. X. et al. Green persistent luminescence and the electronic structure of β-Sialon:Eu2+.J. Mater. Chem. C7, 12544–12551 (2019)..
Liu, D. et al. Tailoring multidimensional traps for rewritable multilevel optical data storage.ACS Appl. Mater. Interfaces11, 35023–35029 (2019)..
Yuan, L. F. et al. Optically stimulated luminescence phosphors: principles, applications, and prospects.Laser Photonics Rev.14, 2000123 (2020)..
Botterman, J., Joos, J. J.&Smet, P. F. Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: influence of excitation wavelength and temperature.Phys. Rev. B90, 085147 (2014)..
Krumpel, A. H. et al. Controlled electron and hole trapping in YPO4: Ce3+,Ln(3+) and LuPO4: Ce3+,Ln(3+) (Ln=Sm, Dy, Ho, Er, Tm).Phys. Rev. B80, https://doi.org/10.1103/PhysRevB.80.085103 (2009)..
Liu, X. L. et al. The red persistent luminescence of (Sr,Ca)AlSiN3: Eu2+and mechanism different to SrAl2O4: Eu2+, Dy3+.J. Lumin.208, 313–321 (2019)..
Wang, L. et al. Red-emitting SrGa2O4: Cu2+phosphor with super-long persistent luminescence.Chem. Mater.34, 10068–10076 (2022)..
Zhong, C. S. et al. High output power and high quantum efficiency in novel NIR phosphor MgAlGa0.7B0.3O4: Cr3+with profound FWHM variation.Adv. Mater.36, 2309500 (2024)..
Van den Eeckhout, K. et al. Revealing trap depth distributions in persistent phosphors.Phys. Rev. B87, 045126 (2013)..
Lu, S. Q. et al. Towards n-type conductivity in hexagonal boron nitride.Nat. Commun.13, 3109 (2022)..
Bos, A. J. J. et al. Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors.J. Lumin.131, 1465–1471 (2011)..
Liu, X. Q. et al. Liquid nitrogen temperature mechanoluminescence and persistent luminescence.Adv. Funct. Mater.33, 2305275 (2023)..
Grinberg, M.&Mahlik, S. Impurity-trapped excitons: experimental evidence and theoretical concept.J. Non-Cryst. Solids354, 4163–4169 (2008)..
Lazarowska, A. et al. Spectroscopic properties and energy level location of Eu2+in Sr2Si5N8phosphor.Opt. Mater.37, 734–739 (2014)..
Grinberg, M. Excited states dynamics under high pressure in lanthanide-doped solids.J. Lumin.131, 433–437 (2011)..
Zhao, X. Y. et al. Effect of detrapping on up-conversion charging in LaMgGa11O19:Pr3+persistent phosphor.J. Rare Earths39, 1492–1496 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution