无数据
Key Laboratory for Special Function Materials and Structural Design of the Ministry of Education, National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology of National Development and Reform Commission, Department of Materials Science, School of Materials and Energy, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu 730000, China
Yuhua Wang (wyh@lzu.edu.cn)
Takatoshi Seto (seto@lzu.edu.cn)
Received:04 February 2024,
Revised:04 June 2024,
Accepted:2024-06-13,
Published Online:15 July 2024,
Published:31 August 2024
Scan QR Code
Ma, X. L., Wang, Y. H. & Seto, T. Electrical stimulation for brighter persistent luminescence. Light: Science & Applications, 13, 1590-1601 (2024).
Ma, X. L., Wang, Y. H. & Seto, T. Electrical stimulation for brighter persistent luminescence. Light: Science & Applications, 13, 1590-1601 (2024). DOI: 10.1038/s41377-024-01507-0.
An immature understanding of the mechanisms of persistent luminescence (PersL) has hindered the development of new persistent luminescent materials (PersLMs) with increased brightness. In this regard
in-situ direct current (DC) electric field measurements were conducted on a layered structure composed of the SrAl
2
O
4
:Eu
2+
Dy
3+
phosphor
and an electrode. In this study
the photoluminescence (PL) and afterglow properties were investigated with respect to voltage by analyzing the current signal and thermoluminescence (TL) spectroscopy. The intensity of PersL increased due to a novel phenomenon known as "external electric field stimulated enhancement of initial brightness of afterglow". This dynamic process was illustrated via the use of a rate equation approach
where the electrons trapped by the ultra-shallow trap at 0.022 eV could be transferred through the conduction band during long afterglow. The afterglow intensity could reach 0.538 cd m
−2
at a 6 V electric voltage. The design of an electric field stimulation technique enables the enhancement of the intensity of PersLMs and provides a new perspective for exploring the fundamental mechanics of certain established PersLMs.
Li, Y., Gecevicius, M. & Qiu, J. R. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev. 45 , 2090–2136 (2016)..
Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-Ⅱ imaging. Nat. Nanotechnol. 16 , 1011–1018 (2021)..
Matsuzawa, T. et al. A new long phosphorescent phosphor with high brightness, SrAl 2 O 4 : Eu 2+ ,Dy 3+ . J. Electrochem. Soc. 143 , 2670–2673 (1996)..
Yang, L. et al. Recent progress in inorganic afterglow materials: mechanisms, persistent luminescent properties, modulating methods, and bioimaging applications. Adv. Opt. Mater. 11 , 2370038 (2023)..
Mushtaq, U. et al. Persistent luminescent nanophosphors for applications in cancer theranostics, biomedical, imaging and security. Mater. Today Bio 23 , 100860 (2023)..
Wang, S. X., Song, Z. & Liu, Q. L. Recent progress in Ce 3+ /Eu 2+ -activated LEDs and persistent phosphors: focusing on the local structure and the electronic structure. J. Mater. Chem. C 11 , 48–96 (2023)..
Zhuang, Y. X. et al. A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors. Opt. Mater. 36 , 1907–1912 (2014)..
Wang, Y. H. & Wang, L. Defect states in Nd 3+ -doped CaAl 2 O 4 : Eu 2+ . J. Appl. Phys. 101 , 053108 (2007)..
Lin, Y. H. et al. Preparation of a new long afterglow blue-emitting Sr 2 MgSi 2 O 7 -based photoluminescent phosphor. J. Mater. Sci. Lett. 20 , 1505–1506 (2001)..
Lin, Y. H. et al. Anomalous luminescence in Sr 4 Al 14 O 25 :Eu, Dy phosphors. Appl. Phys. Lett. 81 , 996–998 (2002)..
Zeng, W. et al. Design, synthesis and characterization of a novel yellow long-persistent phosphor: Ca 2 BO 3 Cl: Eu 2+ ,Dy 3+ . J. Mater. Chem. C. 1 , 3004–3011 (2013)..
Wang, Z. Z. et al. Sunlight-activated yellow long persistent luminescence from Nb-doped Sr 3 SiO 5 :Eu 2+ for warm-color mark applications. J. Mater. Chem. C 8 , 1143–1150 (2020)..
Wang, X. X. et al. Characterization and properties of a red and orange Y 2 O 2 S-based long afterglow phosphor. Mater. Chem. Phys. 80 , 1–5 (2003)..
Wang, S. X. et al. Enhanced performance of Sr 2 Si 5 N 8 :Eu 2+ red afterglow phosphor by co-doping with boron and oxygen. J. Lumin. 204 , 36–40 (2018)..
Xu, J. & Tanabe, S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. J. Lumin. 205 , 581–620 (2019)..
Zhang, J. C. et al. Trap-controlled mechanoluminescent materials. Prog. Mater. Sci. 103 , 678–742 (2019)..
Van der Heggen, D. et al. Persistent luminescence in strontium aluminate: a roadmap to a brighter future. Adv. Funct. Mater. 32 , 2208809 (2022)..
Abbruscato, V. Optical and electrical properties of SrAl 2 O 4 : Eu 2+ . J. Electrochem. Soc. 118 , 930–933 (1971)..
Aitasalo, T. et al. Mechanisms of persistent luminescence in Eu 2+ , RE 3+ doped alkaline earth aluminates. J. Lumin. 94-95 , 59–63 (2001)..
Dorenbos, P. et al. Afterglow and thermoluminescence properties of Lu 2 SiO 5 :Ce scintillation crystals. J. Phys. Condens. Matter 6 , 4167–4180 (1994)..
Dorenbos, P. Mechanism of persistent luminescence in Eu 2+ and Dy 3+ codoped aluminate and silicate compounds. J. Electrochem. Soc. 152 , H107–H110 (2005)..
Clabau, F. et al. Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu 2+ -doped SrAl 2 O 4 with codopants Dy 3+ and B 3+ . Chem. Mater. 17 , 3904–3912 (2005)..
Ueda, J., Tanabe, S. & Nakanishi, T. Analysis of Ce 3+ luminescence quenching in solid solutions between Y 3 Al 5 O 12 and Y 3 Ga 5 O 12 by temperature dependence of photoconductivity measurement. J. Appl. Phys. 110 , 053102 (2011)..
Korthout, K. et al. Luminescence and x-ray absorption measurements of persistent SrAl 2 O 4 : Eu,Dy powders: evidence for valence state changes. Phys. Rev. B 84 , 085140 (2011)..
Joos, J. J. et al. Identification of Dy 3+ /Dy 2+ as electron trap in persistent phosphors. Phys. Rev. Lett. 125 , 033001 (2020)..
van der Heggen, D. et al. Strontium aluminate persistent luminescent single crystals: linear scaling of emission intensity with size is affected by reabsorption. J. Phys. Chem. Lett. 14 , 10151–10157 (2023)..
Bartosiewicz, K. et al. Towards deliberate design of persistent phosphors: a study of La-Ga admixing in LuAG: Ce crystals to engineer elemental homogeneity and carrier trap depths. J. Mater. Chem. C. 11 , 8850–8865 (2023)..
Kong, J. T. & Meijerink, A. Identification and quantification of charge transfer in CaAl 2 O 4 : Eu 2+ , Nd 3+ persistent phosphor. Adv. Opt. Mater. 11 , 2203004 (2023)..
Peng, F., Seto, T. & Wang, Y. H. First evidence of electron trapped Ln 2+ promoting afterglow on Eu 2+ , Ln 3+ activated persistent phosphor-example of BaZrSi 3 O 9 :Eu 2+ ,Sm 3+ . Adv. Funct. Mater. 33, , 2300721 (2023)..
Zeng, P. et al. Investigation of the long afterglow mechanism in SrAl 2 O 4 : Eu 2+ /Dy 3+ by optically stimulated luminescence and thermoluminescence. J. Lumin. 199 , 400–406 (2018)..
Luo, H., Bos, A. J. J. & Dorenbos, P. Controlled electron–hole trapping and de-trapping process in GdAlO 3 by valence band engineering. J. Phys. Chem. C. 120 , 5916–5925 (2016)..
Dorenbos, P. Ce 3+ 5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds. J. Lumin. 135 , 93–104 (2013)..
Dorenbos, P. Modeling the chemical shift of lanthanide 4f electron binding energies. Phys. Rev. B 85 , 165107 (2012)..
Krumpel, A. H. et al. Lanthanide 4f-level location in AVO 4 :Ln 3+ (A = La, Gd, Lu) crystals. J. Phys. Condens. Matter 21 , 115503 (2009)..
Zhuang, Y. X. et al. X-ray-charged bright persistent luminescence in NaYF 4 : Ln(3+)@NaYF 4 nanoparticles for multidimensional optical information storage. Light Sci. Appl. 10 , 132 (2021)..
Li, L. P. et al. Mechanism of the trivalent lanthanides’ persistent luminescence in wide bandgap materials. Light Sci. Appl. 11 , 51 (2022)..
Liu, D. J. et al. Valence conversion and site reconstruction in near-infrared-emitting chromium-activated garnet for simultaneous enhancement of quantum efficiency and thermal stability. Light Sci. Appl. 12 , 248 (2023)..
Ma, S. W., Peng, Z. L. & Kitai, A. H. A CuO nanowire-based alternating current oxide powder electroluminescent device with high stability. Angew. Chem. Int. Ed. 57 , 11267–11272 (2018)..
Song, E. H. et al. Mn 2+ -activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor. Nat. Commun. 13 , 2166 (2022)..
Dexter, D. L. & Schulman, J. H. Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22 , 1063–1070 (1954)..
Yin, X. M. et al. Towards highly efficient NIR Ⅱ response up-conversion phosphor enabled by long lifetimes of Er 3+ . Nat. Commun. 13 , 6549 (2022)..
Qiao, J. W. et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nat. Commun. 10 , 5267 (2019)..
Hölsä, J. et al. Electronic structure of the SrAl 2 O 4 :Eu 2+ persistent luminescence material. J. Rare Earths 27 , 550–554 (2009)..
Luo, J. L. et al. Photocurrent enhanced in UV-vis-NIR photodetector based on CdSe/CdTe core/shell nanowire arrays by piezo-phototronic effect. ACS Photonics 7 , 1461–1467 (2020)..
Liao, C. et al. Creating deep traps in yttrium aluminum garnet for long-term optical storage and afterglow-intensity-ratio-based temperature sensing. Laser & Photonics Reviews , https://doi.org/10.1002/lpor.202300924 https://doi.org/10.1002/lpor.202300924 (in the press)..
Chen, X. Z. et al. Trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence. Adv. Mater. 33 , 2008722 (2021)..
Poort, S. H. M., Blokpoel, W. P. & Blasse, G. Luminescence of Eu 2+ in barium and strontium aluminate and gallate. Chem. Mater. 7 , 1547–1551 (1995)..
Ueda, J. et al. Optical and optoelectronic analysis of persistent luminescence in Eu 2+ ‐Dy 3+ codoped SrAl 2 O 4 ceramic phosphor. Phys. Status Solidi C. 9 , 2322–2325 (2012)..
Ma, X. L. et al. Design of efficient color-tunable long persistent luminescence phosphor BaGa 2 O 4 : Pr 3+ and its performance enhancement via a trap-induced strategy. J. Mater. Chem. C 10 , 1105–1117 (2022)..
Wang, S. X. et al. Green persistent luminescence and the electronic structure of β-Sialon:Eu 2+ . J. Mater. Chem. C 7 , 12544–12551 (2019)..
Liu, D. et al. Tailoring multidimensional traps for rewritable multilevel optical data storage. ACS Appl. Mater. Interfaces 11 , 35023–35029 (2 019)..
Yuan, L. F. et al. Optically stimulated luminescence phosphors: principles, applications, and prospects. Laser Photonics Rev. 14 , 2000123 (2020)..
Botterman, J., Joos, J. J. & Smet, P. F. Trapping and detrapping in SrAl 2 O 4 :Eu,Dy persistent phosphors: influence of excitation wavelength and temperature. Phys. Rev. B 90 , 085147 (2014)..
Krumpel, A. H. et al. Controlled electron and hole trapping in YPO 4 : Ce 3+ ,Ln(3+) and LuPO 4 : Ce 3+ ,Ln(3+) (Ln=Sm, Dy, Ho, Er, Tm). Phys. Rev. B 80 , https://doi.org/10.1103/PhysRevB.80.085103 (2009)..
Liu, X. L. et al. The red persistent luminescence of (Sr,Ca)AlSiN 3 : Eu 2+ and mechanism different to SrAl 2 O 4 : Eu 2+ , Dy 3+ . J. Lumin. 208 , 313–321 (2019)..
Wang, L. et al. Red-emitting SrGa 2 O 4 : Cu 2+ phosphor with super-long persistent luminescence. Chem. Mater. 34 , 10068–10076 (2022)..
Zhong, C. S. et al. High output powe r and high quantum efficiency in novel NIR phosphor MgAlGa 0.7 B 0.3 O 4 : Cr 3+ with profound FWHM variation. Adv. Mater. 36 , 2309500 (2024)..
Van den Eeckhout, K. et al. Revealing trap depth distributions in persistent phosphors. Phys. Rev. B 87 , 045126 (2013)..
Lu, S. Q. et al. Towards n-type conductivity in hexagonal boron nitride. Nat. Commun. 13 , 3109 (2022)..
Bos, A. J. J. et al. Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors. J. Lumin. 131 , 1465–1471 (2011)..
Liu, X. Q. et al. Liquid nitrogen temperature mechanoluminescence and persistent luminescence. Adv. Funct. Mater. 33 , 2305275 (2023)..
Grinberg, M. & Mahlik, S. Impurity-trapped excitons: experimental evidence and theoretical concept. J. Non-Cryst. Solids 354 , 4163–4169 (2008)..
Lazarowska, A. et al. Spectroscopic properties and energy level location of Eu 2+ in Sr 2 Si 5 N 8 phosphor. Opt. Mater. 37 , 734–739 (2014)..
Grinberg, M. Excited states dynamics under high pressure in lanthanide-doped solids. J. Lumin. 131 , 433–437 (2011)..
Zhao, X. Y. et al. Effect of detrapping on up-conversion charging in LaMgGa 11 O 19 :Pr 3+ persistent phosphor. J. Rare Earths 39 , 1492–1496 (2021)..
0
Views
13
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution