1.The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300071, China
2.Shenzhen Research Institute of Nankai University, Shenzhen 518083 Guangdong, China
3.Beijing Institute of Space Mechanics & Electricity, China Academy of Space Technology, 100094 Beijing, China
Yao Lu (yaolu@nankai.edu.cn)
Qiang Wu (wuqiang@nankai.edu.cn)
Jingjun Xu (jjxu@nankai.edu.cn)
Published:31 October 2024,
Published Online:23 August 2024,
Received:06 December 2023,
Revised:07 June 2024,
Accepted:25 June 2024
Scan QR Code
Huang, Y. B. et al. Giant Kerr nonlinearity of terahertz waves mediated by stimulated phonon polaritons in a microcavity chip. Light: Science & Applications, 13, 2231-2239 (2024).
Huang, Y. B. et al. Giant Kerr nonlinearity of terahertz waves mediated by stimulated phonon polaritons in a microcavity chip. Light: Science & Applications, 13, 2231-2239 (2024). DOI: 10.1038/s41377-024-01509-y.
Optical Kerr effect
in which input light intensity linearly alters the refractive index
has enabled the generation of optical solitons
supercontinuum spectra
and frequency combs
playing vital roles in the on-chip devices
fiber communications
and quantum manipulations. Especially
terahertz Kerr effect
featuring fascinating prospects in future high-rate computing
artificial intelligence
and cloud-based technologies
encounters a great challenge due to the rather low power density and feeble Kerr response. Here
we demonstrate a giant terahertz frequency Kerr nonlinearity mediated by stimulated phonon polaritons. Under the influences of the giant Kerr nonlinearity
the power-dependent refractive index change would result in a frequency shift in the microcavity
which was experimentally demonstrated via the measurement of the resonant mode of a chip-scale lithium niobate Fabry-Pérot microcavity. Attributed to the existence of stimulated phonon polaritons
the nonlinear coefficient extracted from the frequency shifts is orders of magnitude larger than that of visible and infrared light
which is also theoretically demonstrated by nonlinear Huang equations. This work opens an avenue for many rich and fruitful terahertz Kerr effect based physical
chemical
and biological systems that have terahertz fingerprints.
Choporova, Y., Knyazev, B.&Pavelyev, V. Holography with high-power CW coherent terahertz source: optical components, imaging, and applications.Light Adv. Manuf.3, 525–541 (2022)..
Petrov, N. et al. Design of broadband terahertz vector and vortex beams: Ⅰ. Review of materials and components.Light Adv. Manuf.3, 640–652 (2022)..
Petrov, N. et al. Design of broadband terahertz vector and vortex beams: Ⅱ. Holographic assessment.Light Adv. Manuf.3, 752–770 (2022)..
Peng, W. Y. et al. High-frequency terahertz waves disrupt Alzheimer's β-amyloid fibril formation.eLight3, 18 (2023)..
Blanchard, F. et al. Generation of intense terahertz radiation via optical methods.IEEE J. Sel. Top. Quantum Electron.17, 5–16 (2011)..
Dai, J. M., Xie, X.&Zhang, X. C. Detection of broadband terahertz waves with a laser-induced plasma in gases.Phys. Rev. Lett.97, 103903 (2006)..
Wu, Q. et al. Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide.Opt. Express17, 9219–9225 (2009)..
Stantchev, R. I. et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector.Sci. Adv.2, e1600190 (2016)..
Wade, C. G. et al. Real-time near-field terahertz imaging with atomic optical fluorescence.Nat. Photonics11, 40–43 (2017)..
Yang, Y. H. et al. Terahertz topological photonics for on-chip communication.Nat. Photonics14, 446–451 (2020)..
Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions.Nature561, 507–511 (2018)..
Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3.Science364, 1079–1082 (2019)..
Greenland, P. T. et al. Coherent control of Rydberg states in silicon.Nature465, 1057–1061 (2010)..
Liu, J. L.&Zhang, X. C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma.Phys. Rev. Lett.103, 235002 (2009)..
Maehrlein, S. et al. Terahertz sum-frequency excitation of a Raman-active phonon.Phys. Rev. Lett.119, 127402 (2017)..
Katayama, I. et al. Ferroelectric soft mode in a SrTiO3thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses.Phys. Rev. Lett.108, 097401 (2012)..
Cole, D. C. et al. Soliton crystals in Kerr resonators.Nat. Photonics11, 671–676 (2017)..
Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications.Nature546, 274–279 (2017)..
Vermeulen, N. et al. Graphene's nonlinear-optical physics revealed through exponentially growing self-phase modulation.Nat. Commun.9, 2675 (2018)..
Shen, Y. et al. Nonlinear cross-phase modulation with intense single-cycle terahertz pulses.Phys. Rev. Lett.99, 043901 (2007)..
Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre.Nat. Photonics8, 830–834 (2014)..
Xue, X. X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators.Nat. Photonics9, 594–600 (2015)..
Pfeifle, J. et al. Coherent terabit communications with microresonator Kerr frequency combs.Nat. Photonics8, 375–380 (2014)..
Yoshiki, W.&Tanabe, T. All-optical switching using Kerr effect in a silica toroid microcavity.Opt. Express22, 24332–24341(2014)..
Xia, K. Y., Nori, F.&Xiao, M. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity.Phys. Rev. Lett.121, 203602 (2018)..
Hochberg, M. et al. Terahertz all-optical modulation in a silicon-polymer hybrid system.Nat. Mater.5, 703–709 (2006)..
Tcypkin, A. N. et al. High Kerr nonlinearity of water in THz spectral range.Opt. Express27, 10419–10425 (2019)..
Woldegeorgis, A. et al. THz induced nonlinear effects in materials at intensities above 26 GW/cm2.J. Infrared Millim. Terahertz Waves39, 667–680 (2018)..
Hoffmann, M. C. et al. Terahertz Kerr effect.Appl. Phys. Lett.95, 231105 (2009)..
Shalaby, M.&Hauri, C. P. Air nonlinear dynamics initiated by ultra-intense lambda-cubic terahertz pulses.Appl. Phys. Lett.106, 181108 (2015)..
Zalkovskij, M. et al. Terahertz-induced Kerr effect in amorphous chalcogenide glasses.Appl. Phys. Lett.103, 221102 (2013)..
Dolgaleva, K. et al. Prediction of an extremely large nonlinearrefractive index for crystals at terahertz frequencies.Phys. Rev. A92, 023809 (2015)..
Lu, Y. et al. Giant enhancement of THz-frequency optical nonlinearity by phonon polariton in ionic crystals.Nat. Commun.12, 3183 (2021)..
Huang, K. Lattice vibrations and optical waves in ionic crystals.Nature167, 779–780 (1951)..
Lu, Y. et al. Light-matter interaction beyond Born-Oppenheimer approximation mediated by stimulated phonon polaritons.Commun. Phys.5, 299 (2022)..
Pan, C. P. et al. Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors.Opt. Express25, 9768–9777 (2017)..
Yang, C. L. et al. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide.Opt. Express18, 26351–26364 (2010)..
Feurer, T. et al. Terahertz polaritonics.Annu. Rev. Mater. Res.37, 317–350 (2007)..
Bass, M. et al. Optical rectification.Phys. Rev. Lett.9, 446–448 (1962)..
Carrig, T. J. et al. Scaling of terahertz radiation via optical rectification in electro‐opticcrystals.Appl. Phys. Lett.66, 121–123 (1995)..
Wu, X. J. et al. Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range.Opt. Express23, 29729–29737 (2015)..
Kozub, A. L., Gerstmann, U.&Schmidt, W. G. Third-order susceptibility of lithium niobate: influence of polarons and bipolarons.Phys. Status Solidi B260, 2200453 (2023)..
Loriot, V. et al. Measurement of high order Kerr refractive index of major air components.Opt. Express17, 13429–13434 (2009)..
Sajadi, M., Wolf, M.&Kampfrath, T. Terahertz-field-induced optical birefringence in common window and substrate materials.Opt. Express23, 28985–28992 (2015)..
Kabaciński, P. et al. Nonlinear refractive index measurement by SPM-induced phase regression.Opt. Express27, 11018–11028 (2019)..
Li, H. P. et al. Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption.Appl. Phys. B64, 659–662 (1997)..
Tcypkin, A. et al. Giant third-order nonlinear response of liquids at terahertz frequencies.Phys. Rev. Appl.15, 054009 (2021)..
Zibod, S. et al. Strong nonlinear response in crystalline quartz at THz frequencies.Adv. Opt. Mater.11, 2202343 (2023)..
Tcypkin, A. N. et al. Measurement of the nonlinear refractive index in ZnSe crystal by modified method of Z-scan in the terahertz spectral range. InProceedings of the 42nd International Conference on Infrared, Millimeter, and Terahertz Waves. Cancun, Mexico(IEEE, 2017).
Boyd, R. W.Nonlinear Optics2nd edn (Elsevier, 2003).
Boysen, H.&Altorfer, F. A neutron powder investigation of the high-temperature structure and phase transition in LiNbO3.Acta Crystallogr. Sect. B50, 405–414 (1994)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution