1.State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
2.Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China
3.Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
4.Electrical Engineering Department, Chalmers University of Technology, Gothenburg 41258, Sweden
Jun Yan Dai (junyand@seu.edu.cn)
Qiao Chen (qiaoc@chalmers.se)
Qiang Cheng (qiangcheng@seu.edu.cn)
Tie Jun Cui (tjcui@seu.edu.cn)
Published:30 September 2024,
Published Online:18 July 2024,
Received:03 January 2024,
Revised:07 June 2024,
Accepted:26 June 2024
Scan QR Code
Liu, W. et al. Arbitrarily rotating polarization direction and manipulating phases in linear and nonlinear ways using programmable metasurface. Light: Science & Applications, 13, 1789-1800 (2024).
Liu, W. et al. Arbitrarily rotating polarization direction and manipulating phases in linear and nonlinear ways using programmable metasurface. Light: Science & Applications, 13, 1789-1800 (2024). DOI: 10.1038/s41377-024-01513-2.
Independent controls of various properties of electromagnetic (EM) waves are crucially required in a wide range of applications. Programmable metasurface is a promising candidate to provide an advanced platform for manipulating EM waves. Here
we propose an approach that can arbitrarily control the polarization direction and phases of reflected waves in linear and nonlinear ways using a stacked programmable metasurface. Further
we extend the space-time-coding theory to incorporate the dimension of polarization
which provides an extra degree of freedom for manipulating EM waves. As proof-of-principle application examples
we consider polarization rotation
phase manipulation
and beam steering at linear and nonlinear frequencies. For validation
we design
fabricate
and measure a metasurface sample. The experimental results show good agreement with theoretical predictions and simulations. The proposed approach has a wide range of applications in various areas
such as imaging
data storage
and wireless communication.
Li, L. et al. Intelligent metasurfaces: control, communication and computing.eLight2, 7 (2022)..
Ma, Q. et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform.eLight2, 11 (2022)..
Yang, Y. H. et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase.Adv. Mater.28, 6866–6871 (2016)..
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science334, 333–337 (2011)..
Landy, N. I. et al. Perfect metamaterial absorber.Phys. Rev. Lett.100, 207402 (2008)..
Cui, T. J. et al. Coding metamaterials, digital metamaterials and programmable metamaterials.Light Sci. Appl.3, e218 (2014)..
Gao, L. H. et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces.Light Sci. Appl.4, e324 (2015)..
Liu, S. et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams.Adv. Sci.3, 1600156 (2016)..
Chen, K. et al. Active anisotropic coding metasurface with independent real-time reconfigurability for dual polarized waves.Adv. Mater. Technol.5, 1900930 (2020)..
Li, L. L. et al. Machine-learning reprogrammable metasurface imager.Nat. Commun.10, 1082 (2019)..
Ma, Q. et al. Smart metasurface with self-adaptively reprogrammable functions.Light Sci. Appl.8, 98 (2019)..
Bai, X. D. et al. High-efficiency transmissive programmable metasurface for multimode OAM generation.Adv. Opt. Mater.8, 2000570 (2020)..
Tang, W. K. et al. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement.IEEE Trans. Wirel. Commun.20, 421–439 (2021)..
Wu, Q. Q.&Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming.IEEE Trans. Wirel. Commun.18, 5394–5409 (2019)..
Shaltout, A., Kildishev, A.&Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity.Opt. Mater. Express5, 2459–2467 (2015)..
Sounas, D. L.&Alù, A. Non-reciprocal photonics based on time modulation.Nat. Photonics11, 774–783 (2017)..
Salary, M. M., Jafar-Zanjani, S.&Mosallaei, H. Electrically tunable harmonics in time-modulated metasurfaces for wavefront engineering.N. J. Phys.20, 123023 (2018)..
Wu, Z. N.&Grbic, A. Serrodyne frequency translation using time-modulated metasurfaces.IEEE Trans. Antennas Propag.68, 1599–1606 (2020)..
Dai, J. Y. et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface.Light Sci. Appl.7, 90 (2018)..
Zhao, J. et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems.Natl Sci. Rev.6, 231–238 (2019)..
Zhang, L. et al. Space-time-coding digital metasurfaces.Nat. Commun.9, 4334 (2018)..
Ramaccia, D. et al. Doppler cloak restores invisibility to objects in relativistic motion.Phys. Rev. B95, 075113 (2017)..
Zhang, L. et al. Breaking reciprocity with space-time-coding digital metasurfaces.Adv. Mater.31, 1904069 (2019)..
Dai, J. Y. et al. Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface.Appl. Phys. Rev.7, 041408 (2020)..
Dai, J. Y. et al. High-efficiency synthesizer for spatial waves based on space-time-coding digital metasurface.Laser Photonics Rev.14, 1900133 (2020)..
Dai, J. Y. et al. Simultaneous in situ direction finding and field manipulation based on space-time-coding digital metasurface.IEEE Trans. Antennas Propag.70, 4774–4783 (2022)..
Chen, X. Q. et al. Artificial neural network for direction-of-arrival estimation and secure wireless communications via space-time-coding digital metasurfaces.Adv. Opt. Mater.10, 2201900 (2022)..
Zhang, L. et al. Dynamically realizing arbitrary multi-bit programmable phases using a 2-Bit time-domain coding metasurface.IEEE Trans. Antennas Propag.68, 2984–2992 (2020)..
Jayathurathnage, P. et al. Time-varying components for enhancing wireless transfer of power and information.Phys. Rev. Appl.16, 014017 (2021)..
Wang, X. C. et al. Space-time metasurfaces for power combining of waves.ACS Photonics8, 3034–3041 (2021)..
Dai, J. Y. et al. Realization of Multi-modulation schemes for wireless communication by time-domain digital coding metasurface.IEEE Trans. Antennas Propag.68, 1618–1627 (2020)..
Zhang, L. et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces.Nat. Electron.4, 218–227 (2021)..
Chen, M. Z. et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface.Natl Sci. Rev.9, nwab134 (2022)..
Wang, S. R. et al. Manipulations of multi-frequency waves and signals via multi-partition asynchronous space-time-coding digital metasurface.Nat. Commun.14, 5377 (2023)..
Wang, S. R. et al. Asynchronous space-time-coding digital metasurface.Adv. Sci.9, 2200106 (2022)..
Cheng, Q. et al. Reconfigurable intelligent surfaces: simplified-architecture transmitters—from theory to implementations.Proc. IEEE110, 1266–1289 (2022)..
Zhang, L.&Cui, T. J. Space-time-coding digital metasurfaces: principles and applications.Research2021, 9802673 (2021)..
Ke, J. C. et al. Space-frequency-polarization-division multiplexed wireless communication system using anisotropic space-time-coding digital metasurface.Natl Sci. Rev.9, nwac225 (2022)..
Chen, Z. Y. et al. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission.Light Sci. Appl.6, e16207 (2017)..
Zang, X. F. et al. Polarization encoded color image embedded in a dielectric metasurface.Adv. Mater.30, 1707499 (2018)..
Zijlstra, P., Chon, J. W. M.&Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods.Nature459, 410–413 (2009)..
Liu, W. et al. Metasurface-based broadband polarization-insensitive polarization rotator.Opt. Express30, 34645–34654 (2022)..
Wang, H. B.&Cheng, Y. J. Single-layer dual-band linear-to-circular polarization converter with wide axial ratio bandwidth and different polarization modes.IEEE Trans. Antennas Propag.67, 4296–4301 (2019)..
Li, L. et al. Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces.Proc. IEEE103, 1057–1070 (2015)..
Liu, W. et al. Broadband polarization-reconfigurable converter using active metasurfaces.IEEE Trans. Antennas Propag.71, 3725–3730 (2023)..
Fan, R. H. et al. Freely tunable broadband polarization rotator for terahertz waves.Adv. Mater.27, 1201–1206 (2015)..
Wu, Z. N., Ra'di, Y.&Grbic, A. Tunable metasurfaces: a polarization rotator design.Phys. Rev. X9, 011036 (2019)..
Zhang, Y. et al. Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial.Carbon133, 170–175 (2018)..
Liu, W. et al. Manipulation of arbitrary polarizations and phases based on metasurfaces.Adv. Opt. Mater.11, 2202790 (2023)..
Shi, Z. J. et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion.Sci. Adv.6, eaba3367 (2020)..
Wang, S. et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincare sphere polarizers.Light Sci. Appl.10, 24 (2021)..
Biswas, S. et al. Broadband electro-optic polarization conversion with atomically thin black phosphorus.Science374, 448–453 (2021)..
Hu, Q. et al. Arbitrary and dynamic poincaré sphere polarization converter with a time-varying metasurface.Adv. Opt. Mater.10, 2101915 (2022)..
Ke, J. C. et al. Linear and nonlinear polarization syntheses and their programmable controls based on anisotropic time-domain digital coding metasurface.Small Struct.2, 2000060 (2020)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution