1.Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
2.Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
3.Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
4.Department of Mechanical Engineering, University of Houston, Houston, TX, USA
Aaswath P. Raman (aaswath@ucla.edu)
Harry A. Atwater (haa@caltech.edu)
Published:30 September 2024,
Published Online:24 July 2024,
Received:21 December 2023,
Revised:01 June 2024,
Accepted:01 July 2024
Scan QR Code
Shayegan, K. J. et al. Broadband nonreciprocal thermal emissivity and absorptivity. Light: Science & Applications, 13, 1820-1827 (2024).
Shayegan, K. J. et al. Broadband nonreciprocal thermal emissivity and absorptivity. Light: Science & Applications, 13, 1820-1827 (2024). DOI: 10.1038/s41377-024-01520-3.
A body that violates Kirchhoff's law of thermal radiation exhibits an inequality in its spectral directional absorptivity and emissivity. Achieving such an inequality is of fundamental interest as well as a prerequisite for achieving thermodynamic limits in photonic energy conversion
1
1
and radiative cooling
2
2
. Thus far
inequalities in the spectral directional emissivity and absorptivity have been limited to narrow spectral resonances
3
3
or wavelengths well beyond the infrared regime
4
4
. Bridging the gap from basic demonstrations to practical applications requires control over a broad spectral range of the unequal spectral directional absorptivity and emissivity. In this work
we demonstrate broadband nonreciprocal thermal emissivity and absorptivity
by measuring the thermal emissivity and absorptivity of gradient epsilon-near-zero InAs layers of subwavelength thicknesses (50 nm and 150 nm) with an external magnetic field. The effect occurs in a spectral range (12.5–16 μm) that overlaps with the infrared transparency window and is observed at moderate (1 T) magnetic fields.
Park, Y., Omair, Z.&Fan, S. Nonreciprocal thermophotovoltaic systems.ACS Photonics9, 3943–3949 (2022)..
Wang, X. J.&Jacob, Z. Symmetry breaking in thermal photonics.Light Sci. Appl.11, 342 (2022)..
Shayegan, K. J. et al. Direct observation of the violation of Kirchhoff's law of thermal radiation.Nat. Photonics17, 891–896 (2023)..
Hadad, Y., Soric, J. C.&Alu, A. Breaking temporal symmetries for emission and absorption.Proc. Natl Acad. Sci. USA113, 3471–3475 (2016)..
Shaltout, A., Kildishev, A.&Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity.Optical Mater. Express5, 2459–2467 (2015)..
Yan, W. et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms.Optica7, 1555–1562 (2020)..
Caloz, C. et al. Electromagnetic nonreciprocity.Phys. Rev. Appl.10, 047001 (2018)..
Liu, T. J. et al. Thermal photonics with broken symmetries.eLight2, 25 (2022)..
Li, M. Q. et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films.Nat. Mater.22, 1196–1202 (2023)..
Hwang, J. S., Xu, J.&Raman, A. P. Simultaneous control of spectral and directional emissivity with gradient epsilon-near-zero InAs photonic structures.Adv. Mater.35, 2302956 (2023)..
Zhong, F. et al. Angle-resolved thermal emission spectroscopy characterization of non-Hermitian metacrystals.Phys. Rev. Appl.13, 014071 (2020)..
Bichri, A. et al. Characterization of Berreman modes in metal/dielectric Ag/SiO2and Ag/MgF2multilayers.J. Phys. Condens. Matter9, 6523–6532 (1996)..
Taliercio, T. et al. Brewster "mode" in highly doped semiconductor layers: an all-optical technique to monitor doping concentration.Opt. Express22, 24294–24303 (2014)..
Zhu, L. X.&Fan, S. H. Near-complete violation of detailed balance in thermal radiation.Phys. Rev. B90, 220301 (2014)..
Khandekar, C. et al. New spin-resolved thermal radiation laws for nonreciprocal bianisotropic media.N. J. Phys.22, 123005 (2020)..
Xu, J., Mandal, J.&Raman, A. P. Broadband directional control of thermal emission.Science372, 393–397 (2021)..
Zhang, Z.&Zhu, L. X. Broadband nonreciprocal thermal emission.Phys. Rev. Appl.19, 014013 (2023)..
Ghalekohneh, S. J., Du, C. K.&Zhao, B. Controlling the contrast between absorptivity and emissivity in nonreciprocal thermal emitters.Appl. Phys. Lett.124, 101104 (2024)..
Caratenuto, A. et al. Magnetic field-induced emissivity tuning of InSb-based metamaterials in the terahertz frequency regime.Optical Mater. Express11, 3141–3153 (2021)..
Crassee, I. et al. Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene.Nano Lett.12, 2470–2474 (2012)..
Pajovic, S. et al. Intrinsic nonreciprocal reflection and violation of Kirchhoff's law of radiation in planar type-I magnetic Weyl semimetal surfaces.Phys. Rev. B102, 165417 (2020)..
Zhao, B. et al. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals.Nano Lett.20, 1923–1927 (2020)..
Park, Y. et al. Violating Kirchhoff's law of thermal radiation in semitransparent structures.ACS Photonics8, 2417–2424 (2021)..
Dong, Y. et al. Fizeau drag in graphene plasmonics.Nature594, 513–516 (2021)..
Xu, L. J. et al. Diffusive Fizeau drag in spatiotemporal thermal metamaterials.Phys. Rev. Lett.128, 145901 (2022)..
Gangaraj, S. A. H.&Monticone, F. Drifting electrons: nonreciprocal plasmonics and thermal photonics.ACS Photonics9, 806–819 (2022)..
Ghanekar, A. et al. Nonreciprocal thermal emission using spatiotemporal modulation of graphene.ACS Photonics10, 170–178 (2023)..
Wang, L. et al. Maximal violation of Kirchhoff's law in planar heterostructures.Phys. Rev. Res.5, L022051 (2023)..
Zhang, Z. N.&Zhu, L. X. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer.Phys. Rev. Appl.18, 027001 (2022)..
Fan, S. H. Thermal photonics and energy applications.Joule1, 264–273 (2017)..
Xiao, Y. Z. et al. Measuring thermal emission near room temperature using Fourier-transform infrared spectroscopy.Phys. Rev. Appl.11, 014026 (2019)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution