1.State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
2.Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
3.CNR NANOTEC Institute of Nanotechnology, via Monteroni, Lecce 73100, Italy
4.Wuhan Institute of Quantum Technology, Wuhan 430206, China
5.School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
6.INFN National Institute of Nuclear Physics, Lecce 73100, Italy
7.Beijing Academy of Quantum Information Sciences, Beijing 100193, China
8.The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
9.Frontier Science Center for Quantum Information, Beijing 100084, China
10.Collaborative Innovation Center of Quantum Matter, Beijing, China
Qihua Xiong (qihua_xiong@tsinghua.edu.cn)
Published:31 October 2024,
Published Online:21 August 2024,
Received:13 October 2023,
Revised:27 May 2024,
Accepted:10 July 2024
Scan QR Code
Luo, Y., Zhao, J. X. & Fieramosca, A. et al. Strong light-matter coupling in van der Waals materials. Light: Science & Applications, 13, 2009-2026 (2024).
Luo, Y., Zhao, J. X. & Fieramosca, A. et al. Strong light-matter coupling in van der Waals materials. Light: Science & Applications, 13, 2009-2026 (2024). DOI: 10.1038/s41377-024-01523-0.
In recent years
two-dimensional (2D) van der Waals materials have emerged as a focal point in materials research
drawing increasing attention due to their potential for isolating and synergistically combining diverse atomic layers. Atomically thin transition metal dichalcogenides (TMDs) are one of the most alluring van der Waals materials owing to their exceptional electronic and optical properties. The tightly bound excitons with giant oscillator strength render TMDs an ideal platform to investigate strong light-matter coupling when they are integrated with optical cavities
providing a wide range of possibilities for exploring novel polaritonic physics and devices. In this review
we focused on recent advances in TMD-based strong light-matter coupling. In the foremost position
we discuss the various optical structures strongly coupled to TMD materials
such as Fabry-Perot cavities
photonic crystals
and plasmonic nanocavities. We then present several intriguing properties and relevant device applications of TMD polaritons. In the end
we delineate promising future directions for the study of strong light-matter coupling in van der Waals materials.
Rivera, N.&Kaminer, I. Light–matter interactions with photonic quasiparticles.Nat. Rev. Phys.2, 538–561 (2020)..
Yamamoto, Y.&Slusher, R. E. Optical processes in microcavities.Phys. Today46, 66–73 (1993)..
Gerard, J. M.&Gayral, B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities.J. Light. Technol.17, 2089–2095 (1999)..
Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals.Phys. Rev.112, 1555–1567 (1958)..
Ghosh, S. et al. Microcavity exciton polaritons at room temperature.Photonics Insights1, R04 (2022)..
Ciuti, C. et al. Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells.Phys. Rev. B58, 7926–7933 (1998)..
Sanvitto, D.&Kéna-Cohen, S. The road towards polaritonic devices.Nat. Mater.15, 1061–1073 (2016)..
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities.Nat. Phys.5, 805–810 (2009)..
Deng, H. et al. Condensation of semiconductor microcavity exciton polaritons.Science298, 199–202 (2002)..
Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate.Nat. Phys.4, 706–710 (2008)..
Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets.Nano Lett.17, 3982–3988 (2017)..
Dusel, M. et al. Room-temperature topological polariton laser in an organic lattice.Nano Lett.21, 6398–6405 (2021)..
Ballarini, D. et al. All-optical polariton transistor.Nat. Commun.4, 1778 (2013)..
Renucci, P. et al. Microcavity polariton spin quantum beats without a magnetic field: a manifestation of Coulomb exchange in dense and polarized polariton systems.Phys. Rev. B72, 075317 (2005)..
Liew, T. C. H., Kavokin, A. V.&Shelykh, I. A. Optical circuits based on polariton neurons in semiconductor microcavities.Phys. Rev. Lett.101, 016402 (2008)..
Amo, A. et al. Exciton–polariton spin switches.Nat. Photonics4, 361–366 (2010)..
Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons.Nature443, 409–414 (2006)..
Zhang, L. et al. Weak lasing in one-dimensional polariton superlattices.Proc. Natl Acad. Sci. USA112, E1516–E1519 (2015)..
Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities.Phys. Rev. Lett.98, 126405 (2007)..
Daskalakis, K. S. et al. Nonlinear interactions in an organic polariton condensate.Nat. Mater.13, 271–278 (2014)..
Zhang, Q.&Zhang, J. All-optical switching based on self-assembled halide perovskite microwires.J. Semicond.43, 010401 (2022)..
Zhang, Q. et al. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold.Nano Lett.21, 1903–1914 (2021)..
Su, R. et al. Perovskite semiconductors for room-temperature exciton-polaritonics.Nat. Mater.20, 1315–1324 (2021)..
Liu, X. Z. et al. Strong light–matter coupling in two-dimensional atomic crystals.Nat. Photonics9, 30–34 (2015)..
Jiang, Y. et al. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures.Light Sci. Appl.10, 72 (2021)..
Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers.Nat. Rev. Mater.7, 778–795 (2022)..
Xiao, D. et al. Coupled spin and valley physics in monolayers of MoS2and other group-Ⅵ dichalcogenides.Phys. Rev. Lett.108, 196802 (2012)..
del Águila, A. G. et al. Ultrafast exciton fluid flow in an atomically thin MoS2semiconductor.Nat. Nanotechnol.18, 1012–1019 (2023)..
Rong, K. X. et al. Spin-valley Rashba monolayer laser.Nat. Mater.22, 1085–1093 (2023)..
Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor.Nat. Commun.9, 4797 (2018)..
Chen, Y. J. et al. Valley-polarized exciton-polaritons in a monolayer semiconductor.Nat. Photonics11, 431–435 (2017)..
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2.Phys. Rev. Lett.113, 076802 (2014)..
Geim, A. K.&Grigorieva, I. V. Van der Waals heterostructures.Nature499, 419–425 (2013)..
Sun, Z. et al. Optical control of room-temperature valley polaritons.Nat. Photonics11, 491–496 (2017)..
Lundt, N. et al. Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature.Phys. Rev. B96, 241403 (2017)..
Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide.Nat. Nanotechnol.13, 906–909 (2018)..
Zhang, L. et al. Photonic-crystal exciton-polaritons in monolayer semiconductors.Nat. Commun.9, 713 (2018)..
Gu, J. et al. A room-temperature polariton light-emitting diode based on monolayer WS2.Nat. Nanotechnol.14, 1024–1028 (2019)..
Lackner, L. et al. Tunable exciton-polaritons emerging from WS2monolayer excitons in a photonic lattice at room temperature.Nat. Commun.12, 4933(2021)..
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity.Nature591, 61–65 (2021)..
Shan, H. Y. et al. Spatial coherence of room-temperature monolayer WSe2exciton-polaritons in a trap.Nat. Commun.12, 6406 (2021)..
Wurdack, M. et al. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor.Nat. Commun.12, 5366 (2021)..
Zhao, J. X. et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature.Nano Lett.21, 3331–3339 (2021)..
Tsintzos, S. I. et al. A GaAs polariton light-emitting diode operating near room temperature.Nature453, 372–375 (2008)..
Datta, B. et al. Highly nonlinear dipolar exciton-polaritons in bilayer MoS2.Nat. Commun.13, 6341 (2022)..
Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor.Nat. Commun.11, 3589 (2020)..
Gu, J. et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2.Nat. Commun.12, 2269 (2021)..
Zhao, J. X. et al. Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity.Nat. Nanotechnol.17, 396–402 (2022)..
Zhao, J. X. et al. Exciton polariton interactions in van der Waals superlattices at room temperature.Nat. Commun.14, 1512 (2023)..
Luo, S. et al. Nanophotonics of microcavity exciton–polaritons.Appl. Phys. Rev.10, 011316 (2023)..
Qing, Y. M. et al. Strong coupling in two-dimensional materials-based nanostructures: a review.J. Opt.24, 024009 (2022)..
Liu, X. Z. et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide.Phys. Rev. Lett.119, 027403 (2017)..
Qiu, L. et al. Room-temperature valley coherence in a polaritonic system.Nat. Commun.10, 1513 (2019)..
Chen, Y. Y. et al. Metasurface integrated monolayer exciton polariton.Nano Lett.20, 5292–5300 (2020)..
Liu, L. et al. Strong plasmon–exciton interactions on nanoantenna array–monolayer WS2hybrid system.Adv. Opt. Mater.8, 1901002 (2020)..
Deng, F. et al. Greatly enhanced plasmon–exciton coupling in Si/WS2/Au nanocavities.Nano Lett.22, 220–228 (2022)..
Hou, S. Y. et al. Manipulating coherent light–matter interaction: continuous transition between strong coupling and weak coupling in MoS2monolayer coupled with plasmonic nanocavities.Adv. Opt. Mater.7, 1900857 (2019)..
Paik, E. Y. et al. High quality factor microcavity for van der Waals semiconductor polaritons using a transferrable mirror.Adv. Opt. Mater.11, 2302585 (2023)..
Lundt, N. et al. Optical Valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor.Nat. Nanotechnol.14, 770–775 (2019)..
Lundt, N. et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2monolayer.Nat. Commun.7, 13328 (2016)..
Hu, T. et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons.Appl. Phys. Lett.110, 051101 (2017)..
Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors.Nat. Photonics11, 497–501 (2017)..
Dufferwiel, S. et al. Spin textures of exciton-polaritons in a tunable microcavity with large TE-TM splitting.Phys. Rev. Lett.115, 246401 (2015)..
Dufferwiel, S. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities.Nat. Commun.6, 8579 (2015)..
Liu, B. et al. Long-range propagation of exciton-polaritons in large-area 2D semiconductor monolayers.ACS Nano17, 14442–14448 (2023)..
Guo, Q. B. et al. Boosting exciton transport in WSe2by engineering its photonic substrate.ACS Photonics9, 2817–2824 (2022)..
Kravtsov, V. et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum.Light Sci. Appl.9, 56 (2020)..
Li, M. Y. et al. Experimental observation of topological Z2exciton-polaritons in transition metal dichalcogenide monolayers.Nat. Commun.12, 4425 (2021)..
Liu, W. J. et al. Generation of helical topological exciton-polaritons.Science370, 600–604 (2020)..
Maggiolini, E. et al. Strongly enhanced light–matter coupling of monolayer WS2from a bound state in the continuum.Nat. Mater.22, 964–969 (2023)..
Han, X. B. et al. Rabi splitting in a plasmonic nanocavity coupled to a WS2monolayer at room temperature.ACS Photonics5, 3970–3976 (2018)..
Liu, R. M. et al. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit.Phys. Rev. Lett.118, 237401 (2017)..
Qin, J. et al. Revealing strong plasmon-exciton coupling between nanogap resonators and two-dimensional semiconductors at ambient conditions.Phys. Rev. Lett.124, 063902 (2020)..
Liu, X. Z. et al. Nonlinear valley phonon scattering under the strong coupling regime.Nat. Mater.20, 1210–1215 (2021)..
Kleemann, M. -E. et al. Strong-coupling of WSe2in ultra-compact plasmonic nanocavities at room temperature.Nat. Commun.8, 1296 (2017)..
Cuadra, J. et al. Observation of tunable charged exciton polaritons in hybrid monolayer WS2−plasmonic nanoantenna system.Nano Lett.18, 1777–1785 (2018)..
Wen, J. X. et al. Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals.Nano Lett.17, 4689–4697 (2017)..
Zheng, D. et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2.Nano Lett.17,3809–3814 (2017)..
Stührenberg, M. et al. Strong light–matter coupling between plasmons in individual gold Bi-pyramids and excitons in mono- and multilayer WSe2.Nano Lett.18, 5938–5945 (2018)..
Liu, W. J. et al. Strong exciton–plasmon coupling in MoS2coupled with plasmonic lattice.Nano Lett.16, 1262–1269 (2016)..
Wang, S. J. et al. Coherent coupling of WS2monolayers with metallic photonic nanostructures at room temperature.Nano Lett.16, 4368–4374 (2016)..
Sun, J. W. et al. Strong plasmon–exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.Nanoscale13, 4408–4419 (2021)..
Yang, L. L. et al. Strong light–matter interactions between gap plasmons and two-dimensional excitons under ambient conditions in a deterministic way.Nano Lett.22, 2177–2186 (2022)..
Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption.ACS Photonics6, 139–147 (2019)..
Weber, T. et al. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces.Nat. Mater.22, 970–976 (2023)..
Zhang, H. Q. et al. Hybrid exciton-plasmon-polaritonsin van der Waals semiconductor gratings.Nat. Commun.11, 3552 (2020)..
Lyons, T. P. et al. Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling.Nat. Photonics16, 632–636 (2022)..
Xu, X. D. et al. Spin and pseudospins in layered transition metal dichalcogenides.Nat. Phys.10, 343–350 (2014)..
Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2.Nat. Nanotechnol.8, 634–638 (2013)..
Selig, M. et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides.Nat. Commun.7, 13279 (2016)..
Hao, K. et al. Direct measurement of exciton valley coherence in monolayer WSe2.Nat. Phys.12, 677–682 (2016)..
Yao, W., Xiao, D.&Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking.Phys. Rev. B77, 235406 (2008)..
Mak, K. F. et al. The Valley Hall effect in MoS2transistors.Science344, 1489–1492 (2014)..
LaMountain, T. et al. Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor.Nat. Commun.12, 4530 (2021)..
Stepanov, P. et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2monolayer in the strong light-matter coupling regime.Phys. Rev. Lett.126, 167401 (2021)..
Shahnazaryan, V. et al. Exciton-exciton interaction in transition-metal dichalcogenide monolayers.Phys. Rev. B96, 115409 (2017)..
Tan, L. B. et al. Interacting polaron-polaritons.Phys. Rev. X10, 021011 (2020)..
Louca, C. et al. Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2homobilayers.Nat. Commun.14, 3818 (2023)..
Cilibrizzi, P. et al. Self-induced valley bosonic stimulation of exciton polaritons in a monolayer semiconductor.Phys. Rev. Lett.130, 036902 (2023)..
Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors.Nat. Phys.13, 255–261 (2017)..
Chakraborty, B. et al. Control of strong light–matter interaction in monolayer WS2through electric field gating.Nano Lett.18, 6455–6460 (2018)..
Lee, B. et al. Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2integrated with plasmonic nanoantenna lattice.Nano Lett.17, 4541–4547 (2017)..
Lundt, N. et al. Magnetic-field-induced splitting and polarization of monolayer-based valley exciton polaritons.Phys. Rev. B100, 121303 (2019)..
Tang, Y. X. et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor.Light Sci. Appl.11, 94 (2022)..
Tang, Y. X. et al. Ultrafast response of a hybrid device based on strongly coupled monolayer WS2and photonic crystals: the effect of photoinduced Coulombic screening.Laser Photonics Rev.14(2020)..
Du, W. et al. Ultrafast modulation of exciton–plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system.ACS Photonics6, 2832–2840 (2019)..
Hu, Z. H. et al. Energy transfer driven brightening of MoS2by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2heterostructures.Nat. Commun.15, 1747 (2024)..
Deng, H., Haug, H.&Yamamoto, Y. Exciton-polariton Bose-Einstein condensation.Rev. Mod. Phys.82, 1489–1537 (2010)..
Bloch, J., Carusotto, I.&Wouters, M. Non-equilibrium Bose-Einstein condensation in photonic systems.Nat. Rev. Phys.4, 470–488 (2022)..
Waldherr, M. et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity.Nat. Commun.9, 3286 (2018)..
Anton-Solanas, C. et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal.Nat. Mater.20, 1233–1239 (2021)..
Wurdack, M. et al. Enhancing ground-state population and macroscopic coherence of room-temperature WS2polaritons through engineered confinement.Phys. Rev. Lett.129, 147402 (2022)..
Shan, H. Y. et al. Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity.Nat. Commun.13, 3001 (2022)..
Luo, Y. et al. Manipulating nonlinear exciton polaritons in an atomically-thin semiconductor with artificial potential landscapes.Light Sci. Appl.12, 220 (2023)..
Schneider, C. et al. An electrically pumped polariton laser.Nature497, 348–352 (2013)..
Mischok, A. et al. Highly efficient polaritonic light-emitting diodes with angle-independent narrowband emission.Nat. Photonics17, 393–400 (2023)..
Leng, M. Y. et al. Optically pumped polaritons in perovskite light-emitting diodes.ACS Photonics10, 1349–1355 (2023)..
Lu, T. -C. et al. Room temperature current injection polariton light emitting diode with a hybrid microcavity.Nano Lett.11, 2791–2795 (2011)..
Amo, A.&Bloch, J. Exciton-polaritons in lattices: a non-linear photonic simulator.C. R. Phys.17, 934–945 (2016)..
Berloff, N. G. et al. Realizing the classicalXYHamiltonian in polariton simulators.Nat. Mater.16, 1120–1126 (2017)..
Kyriienko, O., Sigurdsson, H.&Liew, T. C. H. Probabilistic solving ofNP-hard problems with bistable nonlinear optical networks.Phys. Rev. B99, 195301 (2019)..
Tao, R. J. et al. Halide perovskites enable polaritonicXYspin Hamiltonian at room temperature.Nat. Mater.21, 761–766 (2022)..
Su, R. et al. Optical switching of topological phase in a perovskite polariton lattice.Sci. Adv.7, eabf8049 (2021)..
Wang, J. et al. Controllable vortex lasing arrays in a geometrically frustrated exciton-polariton lattice at room temperature.Natl Sci. Rev.10, nwac096 (2023)..
Wu, J. Q. et al. Higher-order topological polariton corner state lasing.Sci. Adv.9, eadg4322 (2023)..
Feng, J. G. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires.Sci. Adv.7, eabj6627 (2021)..
Zvyagintseva, D. et al. Machine learning of phase transitions in nonlinear polariton lattices.Commun. Phys.5, 8 (2022)..
Umucalılar, R. O.&Carusotto, I. Fractional quantum hall states of photons in an array of dissipative coupled cavities.Phys. Rev. Lett.108, 206809 (2012)..
Liew, T. C. H. The future of quantum in polariton systems: opinion.Opt. Mater. Express13, 1938–1946 (2023)..
Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities.Phys. Rev. Lett.103, 033601 (2009)..
Le Boité, A., Orso, G.&Ciuti, C. Steady-state phases and tunneling-induced instabilities in the driven dissipative Bose-Hubbard model.Phys. Rev. Lett.110, 233601 (2013)..
Koghee, S.&Wouters, M. Dynamical quantum depletion in polariton condensates.Phys. Rev. B92, 195309 (2015)..
Lledó, C., Mavrogordatos, T.&Szymańska, M. H. Driven Bose-Hubbard dimer under non-local dissipation: a bistable time-crystal.Phys. Rev. B100, 054303 (2019)..
Carreño, J. C. L.&Laussy, F. P. Excitation with quantum light. Ⅰ. Exciting a harmonic oscillator.Phys. Rev. A94, 063825 (2016)..
Bleu, O. et al. Polariton interactions in microcavities with atomically thin semiconductor layers.Phys. Rev. Res.2, 043185 (2020)..
Du, L. J. et al. Moiré photonics and optoelectronics.Science379, eadg0014 (2023)..
Liu, Y. P. et al. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures.Chem. Soc. Rev.50, 6401–6422 (2021)..
Tan, Q. H. et al. Layer-dependentcorrelated phases in WSe2/MoS2moiré superlattice.Nat. Mater.22, 605–611 (2023)..
Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2heterobilayers.Nat. Mater.19, 617–623 (2020)..
Huang, D. et al. Excitons in semiconductor moiré superlattices.Nat. Nanotechnol.17, 227–238 (2022)..
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2moiré superlattices.Nature579, 359–363 (2020)..
Tang, Y. H. et al. Simulation of Hubbard model physics in WSe2/WS2moiré superlattices.Nature579, 353–358 (2020)..
Förg, M. et al. Cavity-control of interlayer excitons in van der Waals heterostructures.Nat. Commun.10, 3697 (2019)..
Yu, H. Y.&Yao, W. Electrically tunable topological transport of moiré polaritons.Sci. Bull.65, 1555–1562 (2020)..
Fitzgerald, J. M., Thompson, J. J. P.&Malic, E. Twist angle tuning of moiré exciton polaritons in van der Waals heterostructures.Nano Lett.22, 4468–4474 (2022)..
Kim, D. S. et al. Electrostatic moiré potential from twisted hexagonal boron nitride layers.Nat. Mater.23, 65–70 (2024)..
Zhao, P., Xiao, C. X.&Yao, W. Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate.npj 2D Mater. Appl.5, 38 (2021)..
Rechcińska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities.Science366, 727–730 (2019)..
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.Nature546, 270–273 (2017)..
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals.Nature546, 265–269 (2017)..
Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor.Nat. Mater.20, 1657–1662 (2021)..
Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor.Nature609, 282–286 (2022)..
Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3.Nature583, 785–789 (2020)..
Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator.Nat. Nanotechnol.16, 655–660 (2021)..
Wang, X. Z. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals.Nat. Mater.20, 964–970 (2021)..
Li, Q. Y. et al. Magnetic exciton-polariton with strongly coupled atomic and photonic anisotropies. Print athttps://doi.org/10.48550/arXiv.42306.11265https://doi.org/10.48550/arXiv.42306.11265(2023).
Wang, T. T. et al. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime.Nat. Commun.14, 5966 (2023)..
Dirnberger, F. et al. Spin-correlated exciton–polaritons in a van der Waals magnet.Nat. Nanotechnol.17, 1060–1064 (2022)..
Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons.Nature620, 533–537 (2023)..
Sim, S. et al. Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2.Nat. Commun.7, 13569 (2016)..
Arora, A. et al. Highly anisotropic in-plane excitons in atomically thin and bulklike 1T′-ReSe2.Nano Lett.17, 3202–3207 (2017)..
Gogna, R., Zhang, L.&Deng, H. Self-hybridized, polarized polaritons in ReS2crystals.ACS Photonics7, 3328–3332 (2020)..
Chakrabarty, D. et al. Interfacial anisotropic exciton-polariton manifolds in ReS2.Optica8, 1488–1494 (2021)..
Coriolano, A. et al. Rydberg polaritons in ReS2crystals.Sci. Adv.8, eadd8857 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution