1.Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
2.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3.National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd. and General Research Institute for Nonferrous Metals, Beijing 100088, China
4.Department of Physics, Beihang University, Beijing 100191, China
5.Spallation Neutron Source Science Center, Dongguan 523803, China
6.Department of Optical Materials, Institute of Physics of the Czech Academy of Sciences, Prague 16200, Czech Republic
7.Northwest Institute of Nuclear Technology, Xi'an 710024, China
Xilei Sun (sunxl@ihep.ac.cn)
Xiaoping OuYang (oyxp2003@aliyun.com)
Yuntao Wu (ytwu@mail.sic.ac.cn)
Published:30 September 2024,
Published Online:14 August 2024,
Received:10 February 2024,
Revised:24 June 2024,
Accepted:15 July 2024
Scan QR Code
Wang, Q. et al. Exciton-harvesting enabled efficient charged particle detection in zero-dimensional halides. Light: Science & Applications, 13, 1944-1955 (2024).
Wang, Q. et al. Exciton-harvesting enabled efficient charged particle detection in zero-dimensional halides. Light: Science & Applications, 13, 1944-1955 (2024). DOI: 10.1038/s41377-024-01532-z.
Materials for radiation detection are critically important and urgently demanded in diverse fields
starting from fundamental scientific research to medical diagnostics
homeland security
and environmental monitoring. Low-dimensional halides (LDHs) exhibiting efficient self-trapped exciton (STE) emission with high photoluminescence quantum yield (PLQY) have recently shown a great potential as scintillators. However
an overlooked issue of exciton-exciton interaction in LDHs under ionizing radiation hinders the broadening of its radiation detection applications. Here
we demonstrate an exceptional enhancement of exciton-harvesting efficiency in zero-dimensional (0D) Cs
3
Cu
2
I
5
:Tl halide single crystals by forming strongly localized Tl-bound excitons. Because of the suppression of non-radiative exciton-exciton interaction
an excellent α/β pulse-shape-discrimination (PSD) figure-of-merit (FoM) factor of 2.64
a superior rejection ratio of 10
−9
and a high scintillation yield of 26 000 photons MeV
−1
under 5.49 MeV α-ray are achieved in Cs
3
Cu
2
I
5
:Tl single crystals
outperforming the commercial ZnS:Ag/PVT composites for charged particle detection applications. Furthermore
a radiation detector prototype based on Cs
3
Cu
2
I
5
:Tl single crystal demonstrates th
e capability of identifying radioactive
220
Rn gas for environmental radiation monitoring applications. We believe that the exciton-harvesting strategy proposed here can greatly boost the applications of LDHs materials.
Targeted Alpha Therapy Working Group. Targeted alpha therapy, an emerging class of cancer agents: a review.JAMA Oncol.4, 1765–1772 (2018)..
Badalà, A. et al. Trends in particle and nuclei identification techniques in nuclear physics experiments.La Riv. del. Nuovo Cim.45, 189–276 (2022)..
Sukanya, S., Noble, J.&Joseph, S. Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations: An overview.Chemosphere303, 135141 (2022)..
Prelas, M. A. et al. A review of nuclear batteries.Prog. Nucl. Energy75, 117–148 (2014)..
George, A. C. The history, development and the present status of the Radon measurement programme in the United States of America.Radiat. Prot. Dosim.167, 8–14 (2015)..
Ifergan, Y. et al. Development of a thin, double-sided alpha/beta detector for surface-contamination measurement.IEEE Trans. Nucl. Sci.63, 634–638 (2016)..
Sun et al. Fast light of CsI(Na) crystals.Chin. Phys. C.35, 1130–1133 (2011)..
Feng, X. G. et al. A general method for optimizing the parameter of α/β discrimination in liquid scintillation counting.Anal. Methods6, 115–119 (2014)..
Yamada, T. et al. α-particle discrimination in the measurement of α/β decaying chains by the use of ultra-thin plastic scintillation sheets.Appl. Radiat. Isotopes159, 109069 (2020)..
Dujardin, C. et al. Needs, trends, and advances in inorganic scintillators.IEEE Trans. Nucl. Sci.65, 1977–1997 (2018)..
Yuan, Z. et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission.Nat. Commun.8, 14051 (2017)..
Luo, J. J. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites.Nature563, 541–545 (2018)..
Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators.Nature561, 88–93 (2018)..
Cheng, S. L. et al. Ultrabright and highly efficient all‐inorganic zero‐dimensional perovskite scintillators.Adv. Opt. Mater.9, 2100460 (2021)..
Xu, L. J. et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide.Nat. Commun.11, 4329 (2020)..
Pan, W. C. et al. Cs2AgBiBr6single-crystal X-ray detectors with a low detection limit.Nat. Photonics11, 726–732 (2017)..
Yu, D. J. et al. Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring.Nat. Commun.11, 3395 (2020)..
Xie, A. Z. et al. Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection.Commun. Mater.1, 37 (2020)..
Li, X. M. et al. Mn2+induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5for high-performance nuclear battery.Nat. Commun.12, 3879 (2021)..
Han, D. et al. Unraveling luminescence mechanisms in zero-dimensional halide perovskites.J. Mater. Chem. C.6, 6398–6405 (2018)..
Yang, X. L. et al. Photophysical properties of zero-dimensional perovskites studied by PBE0 and GW+BSE methods.J. Appl. Phys.130, 203106 (2021)..
Du, M. H. Emission trend of multiple self-trapped excitons in luminescent 1D copper halides.ACS Energy Lett.5, 464–469 (2020)..
Bartram, R. H.&Lempicki, A. Efficiency of electron-hole pair production in scintillators.J. Lumin.68, 225–240 (1996)..
Grim, J. Q. et al. Nonlinear quenching of densely excited states in wide-gap solids.Phys. Rev. B87, 125117 (2013)..
Åberg, D. et al. Origin of resolution enhancement by co-doping of scintillators: Insight from electronic structure calculations.Appl. Phys. Lett.104, 211908 (2014)..
Yuan, D. S. Air-stable bulk halide single-crystal scintillator Cs3Cu2I5by melt growth: intrinsic and Tl doped with high light yield.ACS Appl. Mater. Interfaces12, 38333–38340 (2020)..
Stand, L. et al. Crystal growth and scintillation properties of pure and Tl-doped Cs3Cu2I5.Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectro. Detect. Associat. Equip.991, 164963 (2021)..
Syntfeld-Każuch, A. et al. Energy resolution of CsI(Na) scintillators.Radiat. Meas.45, 377–379 (2010)..
Morishita, Y. et al. Performance comparison of scintillators for alpha particle detectors.Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectro. Detect. Associat. Equip.764, 383–386 (2014)..
Hu, X. D. et al. In situ fabrication of Cs3Cu2I5:Tl nanocrystal films for high-resolution and ultrastable X-ray imaging.J. Phys. Chem. Lett.13, 2862–2870 (2022)..
Cheng, S. L. et al. Zero-dimensional Cs3Cu2I5perovskite single crystal as sensitive X-ray and γ-ray scintillator.Phys. Status Solidi (RRL)-Rapid Res. Lett.14, 2000374 (2020)..
Jun, T. et al. Lead-free highly efficient blue-emitting Cs3Cu2I5with 0D electronic structure.Adv. Mater.30, 1804547 (2018)..
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Crystallogr. Sect. A32, 751–767 (1976)..
Liang, Y. et al. A high-rigidity organic-inorganic metal halide hybrid enabling reversible and enhanced self-trapped exciton emission under high pressure.Nano Lett.23, 7599–7606 (2023)..
Nagirnyi, V. et al. Peculiarities of the triplet relaxed excited-state structure and luminescence of a CsI: Tl crystal.J. Phys.: Condens. Matter7, 3637–3653 (1995)..
Morad, V. et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation.J. Am. Chem. Soc.141, 9764–9768 (2019)..
Hui, Y. S. Q. et al. Photophysics in Cs3Cu2I5and CsCu2I3.Mater. Chem. Front.5, 7088–7107 (2021)..
Lian, L. Y. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5nanocrystals with self-trapped excitons.Adv. Sci.7, 2000195 (2020)..
Buryi, M. et al. Luminescence and photo-thermally stimulated defect-creation processes in Bi3+-doped single crystals of lead tungstate.Phys. Status Solidi (B)253, 895–910 (2016)..
Nagirnyi, V. et al. Peculiarities of the triplet relaxed excited state structure in thallium-doped cesium halide crystals.Radiat. Eff. Defects Solids135, 379–382 (1995)..
Mihóková, E. et al. Temperature dependence of anomalous luminescence decay: Theory and experiment.Phys. Rev. B66, 155102 (2002)..
Polák, K.&Mihóková, E. In+, Pb2+and Bi3+in KBr crystal: luminescence dynamics.Opt. Mater.32, 1280–1282 (2010)..
Nikl, M. et al. Decay kinetics of CsI: Tl luminescence excited in the A absorption band.Philos. Mag. B67, 627–649 (1993)..
McAllister, A. et al. Auger recombination in sodium-iodide scintillators from first principles.Appl. Phys. Lett.106, 141901 (2015)..
Belsky, A. et al. Mechanisms of luminescence decay in YAG-Ce, Mg fibers excited by γ- and X-rays.Opt. Mater.92, 341–346 (2019)..
Shi, H. L.&Du, M. H. Discrete electronic bands in semiconductors and insulators: potential high-light-yield scintillators.Phys. Rev. Appl.3, 054005 (2015)..
Shi, H. L. et al. Impact of metal ns2lone pair on luminescence quantum efficiency in low-dimensional halide perovskites.Phys. Rev. Mater.3, 034604 (2019)..
Franco, C. V. et al. Auger recombination and multiple exciton generation in colloidal two-dimensional perovskite nanoplatelets: implications for light-emitting devices.ACS Appl. Nano Mater.4, 558–567 (2021)..
Bos, A. J. J. Thermoluminescence as a research tool to investigate luminescence mechanisms.Materials10, 1357 (2017)..
West, S. et al. Compact readout of large CLYC scintillators with silicon photomultipler arrays.Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectro. Detect. Assoc. Equip.951, 162928 (2020)..
McDonald, B. S. et al. A wearable sensor based on CLYC scintillators.Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectro. Detect. Assoc. Equip.821, 73–80 (2016)..
Sakoda, A., Ishimori, Y.&Yamaoka, K. A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash.Appl. Radiat. Isotopes69, 1422–1435 (2011)..
Prichard, H. M.&Gesell, T. F. Radon in the environment.Adv. Radiat. Biol.11, 391–428 (1984)..
Al-Zoughool, M.&Krewski, D. Health effects of radon: a review of the literature.Int. J. Radiat. Biol.85, 57–69 (2009)..
Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction.Phys. B: Condens. Matter192, 55–69 (1993)..
Heyd, J., Scuseria, G. E.&Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential.The.J. Chem. Phys.118, 8207–8215 (2003)..
Kresse, G.&Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys. Rev. B54, 11169–11186 (1996)..
Moszynski, M. et al. Absolute light output of scintillators.IEEE Trans. Nucl. Sci.44, 1052–1061 (1997)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution