1.Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
2.Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA
3.Reality Labs Research, Meta, Redmond, WA, USA
Xiyuan Lu (xnl9@umd.edu)
Kartik Srinivasan (kartik.srinivasan@nist.gov)
Published:31 October 2024,
Published Online:21 August 2024,
Received:22 January 2024,
Revised:08 July 2024,
Accepted:15 July 2024
Scan QR Code
Sun, Y. et al. Advancing on-chip Kerr optical parametric oscillation towards coherent applications covering the green gap. Light: Science & Applications, 13, 2212-2220 (2024).
Sun, Y. et al. Advancing on-chip Kerr optical parametric oscillation towards coherent applications covering the green gap. Light: Science & Applications, 13, 2212-2220 (2024). DOI: 10.1038/s41377-024-01534-x.
Optical parametric oscillation (OPO) in Kerr microresonators can efficiently transfer near-infrared laser light into the visible spectrum. To date
however
chromatic dispersion has mostly limited output wavelengths to > 560 nm
and robust access to the whole green light spectrum has not been demonstrated. In fact
wavelengths between 532 nm and 633 nm
commonly referred to as the "green gap"
are especially challenging to produce with conventional laser gain. Hence
there is motivation to extend the Kerr OPO wavelength range and develop reliable device designs. Here
we experimentally show how to robustly access the entire green gap with Kerr OPO in silicon nitride microrings pumped near 780 nm. Our microring geometries are optimized for green-gap emission; in particular
we introduce a dispersion engineering technique
based on partially undercutting the microring
which not only expands wavelength access but also proves robust to variations in resonator dimensions. Using just four devices
we generate > 150 wavelengths evenly distributed throughout the green gap
as predicted by our dispersion simulations. Moreover
we establish the usefulness of Kerr OPO to coherent applications by demonstrating continuous frequency tuning (> 50 GHz) and narrow optical linewidths (< 1 MHz). Our work represents an important step in the quest to bring nonlinear nanophotonics and its advantages to the visible spectrum.
Chellappan, K. V., Erden, E.&Urey, H. Laser-based displays: a review.Appl. Opt.49, F79–F98 (2010)..
Zhao, J. Y. et al. Full-color laser displays based on organic printed microlaser arrays.Nat. Commun.10, 870 (2019)..
Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10-11instability.Optica5, 443–449 (2018)..
Shang, H. S. et al. Laser with 10-13short-term instability for compact optically pumped cesium beam atomic clock.Opt. Express28, 6868–6880 (2020)..
Zou, D. et al. Sensing earth rotation with a helium-neon laser operating on three transitions in the visible region.Appl. Opt.58, 7884–7891 (2019)..
Luke, A. M. et al. Lasers: a review with their applications in oral medicine.J. Lasers Med. Sci.10, 324–329 (2019)..
Moody, G. et al. Roadmap on integrated quantum photonics.J. Phys. : Photon.4, 012501 (2022)..
Uppu, R. et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology.Nat. Nanotechnol.16, 1308–1317 (2021)..
Pleasants, S. Overcoming the 'green gap'.Nat. Photon.7, 585 (2013)..
Moustakas, T. D.&Paiella, R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz.Rep. Prog. Phys.80, 106501 (2017)..
Hamada, H. et al. AlGaInP strained multiple-quantum-well visible laser diodes (λL≤ 630 nm band) with a multiquantum barrier grown on misoriented substrates.IEEE J. Quant. Electron.29, 1844–1850 (1993)..
Kitatani, T. et al. A 1.3-µm GaInNAs/GaAs single-quantum-well laser diode with a high characteristic temperature over 200 K.Jpn. J. Appl. Phys.39, L86 (2000)..
Sun, Y. et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si.Nat. Photon.10, 595–599 (2016)..
Ra, Y. H. et al. An electrically pumped surface-emitting semiconductor green laser.Sci. Adv.6, eaav7523 (2020)..
Mei, Y. et al. Quantum dot vertical-cavity surface-emitting lasers covering the 'green gap'.Light Sci. Appl.6, e16199 (2017)..
Li, P. P. et al. Demonstration of yellow (568 nm) stimulated emission from optically pumped InGaN/GaN multi-quantum wells.Appl. Phys. Lett.121, 071103 (2022)..
Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths.Nat. Photon.17, 157–164 (2023)..
Sperling, J. et al. Breakthrough instruments and products: laser light tunable across the visible up to mid-infrared: novel turnkey cw OPO with efficiency-optimized design.Rev. Sci. Instrum.92, 129502 (2021)..
Schäfer, F. P.Dye Lasers. 1st edn (Springer Berlin, 1973).
Wang, Y. B. et al. Photonic-circuit-integrated titanium: sapphire laser.Nat. Photon.17, 338–345 (2023)..
Carmon, T.&Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation.Nat. Phys.3, 430–435 (2007)..
Ling, J. W. et al. Self-injection locked frequency conversion laser.Laser Photon. Rev.17, 2200663 (2023)..
Guo, X., Zou, C. -L.&Tang, H. X. Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency.Optica3, 1126–1131 (2016)..
Surya, J. B. et al. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings.Optica5, 103–108 (2018)..
Levy, J. S. et al. Harmonic generation in silicon nitride ring resonators.Opt. Express19, 11415–11421 (2011)..
Lu, X. Y. et al. Efficient photoinduced second-harmonic generation in silicon nitride photonics.Nat. Photon.15, 131–136 (2021)..
Nitiss, E. et al. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators.Nat. Photon.16, 134–141 (2022)..
Sayson, N. L. B. et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators.Nat. Photon.13, 701–706 (2019)..
Lu, X. Y. et al. Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics.Optica6, 1535–1541 (2019)..
Stone, J. R. et al. Efficient chip-based optical parametric oscillators from 590 to 1150 nm.APL Photon.7, 121301 (2022)..
Lu, X. Y. et al. On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump.Optica7, 1417–1425 (2020)..
Domeneguetti, R. R. et al. Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths.Optica8, 316–322 (2021)..
Lu, X. Y. et al. Kerr optical parametric oscillation in a photonic crystal microring for accessing the infrared.Opt. Lett.47, 3331–3334 (2022)..
Tang, Y. L. et al. Widely separated optical Kerr parametric oscillation in AlN microrings.Opt. Lett.45, 1124–1127 (2020)..
Pidgayko, D. et al. Voltage-tunable optical parametric oscillator with an alternating dispersion dimer integrated on a chip.Optica10, 1582–1586 (2023)..
Black, J. A. et al. Optical-parametric oscillation in photonic-crystal ring resonators.Optica9, 1183–1189 (2022)..
Perez, E. F. et al. High-performance Kerr microresonator optical parametric oscillator on a silicon chip.Nat. Commun.14, 242 (2023)..
Ledezma, L. et al. Octave-spanning tunable infrared parametric oscillators in nanophotonics.Sci. Adv.9, eadf9711 (2023)..
Lu, J. J. et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator.Optica8, 539–544 (2021)..
Bruch, A. W. et al. On-chip χ(2)microring optical parametric oscillator.Optica6, 1361–1366 (2019)..
Stone, J. R. et al. Conversion efficiency in Kerr-microresonator optical parametric oscillators: from three modes to many modes.Phys. Rev. Appl.17, 024038 (2022)..
Isichenko, A. et al. Chip-scale, sub-Hz fundamental sub-kHz integral linewidth 780 nm laser through self-injection-locking a Fabry-Pérot laser to an ultra-high Q integrated resonator.arXivhttps://doi.org/10.48550/arXiv.2307.04947https://doi.org/10.48550/arXiv.2307.04947(2023)..
Zhang, Z. Y. et al. Photonic integration platform for rubidium sensors and beyond.Optica10, 752–753 (2023)..
Moille, G. et al. Integrated buried heaters for efficient spectral control of air-clad microresonator frequency combs.APL Photon.7, 126104 (2022)..
Li, B. H. et al. High-coherence hybrid-integrated 780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride resonator.Optica10, 1241–1244 (2023)..
Clementi, M. et al. A chip-scale second-harmonic source via self-injection-locked all-optical poling.Light Sci. Appl.12, 296 (2023)..
Balram, K. C. et al. The nanolithography toolbox.J. Res. Natl Inst. Stand. Technol.121, 464–475 (2016)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution