1.Wyant College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
2.Wyant College of Optical Sciences and Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
Judith Su (judy@optics.arizona.edu)
Published:31 October 2024,
Published Online:19 August 2024,
Received:29 May 2024,
Revised:10 July 2024,
Accepted:16 July 2024
Scan QR Code
Hao, S., Suebka, S. & Su, J. Single 5-nm quantum dot detection via microtoroid optical resonator photothermal microscopy. Light: Science & Applications, 13, 2145-2155 (2024).
Hao, S., Suebka, S. & Su, J. Single 5-nm quantum dot detection via microtoroid optical resonator photothermal microscopy. Light: Science & Applications, 13, 2145-2155 (2024). DOI: 10.1038/s41377-024-01536-9.
Label-free detection techniques for single particles and molecules play an important role in basic science
disease diagnostic
s
and nanomaterial investigations. While fluorescence-based methods are tools for single molecule detection and imaging
they are limited by available molecular probes and photoblinking and photobleaching. Photothermal microscopy has emerged as a label-free imaging technique capable of detecting individual nanoabsorbers with high sensitivity. Whispering gallery mode (WGM) microresonators can confine light in a small volume for enhanced light-matter interaction and thus are a promising ultra-sensitive photothermal microscopy platform. Previously
microtoroid optical resonators were combined with photothermal microscopy to detect 250 nm long gold nanorods and 100 nm long polymers. Here
we combine microtoroids with photothermal microscopy to spatially detect single 5 nm diameter quantum dots (QDs) with a signal-to-noise ratio exceeding 10
4
. Photothermal images were generated by point-by-point scanning of the pump laser. Single particle detection was confirmed for 18 nm QDs by high sensitivity fluorescence imaging and for 5 nm QDs via comparison with theory. Our system demonstrates the capability to detect a minimum heat dissipation of 0.75 pW. To achieve this
we integrated our microtoroid based photothermal microscopy setup with a low amplitude modulated pump laser and utilized the proportional-integral-derivative controller output as the photothermal signal source to reduce noise and enhance signal stability. The heat dissipation of these QDs is below that from single dye molecules. We anticipate that our work will have application in a wide variety of fields
including the biological sciences
nanotechnology
materials science
chemistry
and medicine.
dos Santos Rodrigues, F. H. et al. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts.BBA Adv.3, 100091 (2023)..
Reinhardt, S. C. M. et al. Ångström-resolution fluorescence microscopy.Nature617, 711–716 (2023)..
Arnould, B., Quillin, A. L.&Heemstra, J. M. Tracking the message: applying single molecule localization microscopy to cellular RNA imaging.ChemBioChem24, e202300049 (2023)..
Sarfraz, N. et al. Visualizing orthogonal RNAs simultaneously in live mammalian cells by fluorescence lifetime imaging microscopy (FLIM).Nat. Commun.14, 867 (2023)..
Jacoby-Morris, K.&Patterson, G. H. Choosing fluorescent probes and labeling systems. inMethods Mol. Biol.2304, 37–64 (2021)..
Dunst, S.&Tomancak, P. Imaging flies by fluorescence microscopy: principles, technologies, and applications.Genetics211, 15–34 (2019)..
Lee, M. Y. et al. Fluorescent labeling of abundant reactive entities (FLARE) for cleared-tissue and super-resolution microscopy.Nat. Protoc.17, 819–846 (2022)..
Laitenberger, O. et al. Towards unbiased fluorophore counting in superresolution fluorescence microscopy.Nanomaterials13, 459 (2023)..
Sehayek, S. et al. A high-throughput image correlation method for rapid analysis of fluorophore photoblinking and photobleaching rates.ACS Nano13, 11955–11966 (2019)..
Zheng, Q. S.&Blanchard, S. C. Single fluorophore blinking. InEncyclopedia of Biophysics(ed. Roberts, G. C. K.) 2322–2323 (Berlin, Heidelberg: Springer, 2013).
Adhikari, S. et al. Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules.ACS Nano14, 16414–16445 (2020)..
Boyer, D. et al. Photothermal imaging of nanometer-sized metal particles among scatterers.Science297, 1160–1163 (2002)..
Berciaud, S. et al. Absorption spectroscopy of individual single-walled carbon nanotubes.Nano Lett.7, 1203–1207 (2007)..
Hou, L. et al. Absorption and quantum yield of single conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene](MEH-PPV) molecules.Nano Lett.17, 1575–1581 (2017)..
Heylman, K. D., Knapper, K. A.&Goldsmith, R. H. Photothermal microscopy of nonluminescent single particles enabled by optical microresonators.J. Phys. Chem. Lett.5, 1917–1923 (2014)..
Tomimatsu, T. et al. Photothermal imaging of skeletal muscle mitochondria.Biomed. Opt. Express8, 2965–2975 (2017)..
Miyazaki, J.&Toumon, Y. Label-free dynamic imaging of mitochondria and lysosomes within living cells via simultaneous dual-pump photothermal microscopy.Biomed. Opt. Express10, 5852–5861 (2019)..
Miyazaki, J., Tsurui, H.&Kobayashi, T. Reduction of distortion in photothermal microscopy and its application to the high-resolution three-dimensional imaging of nonfluorescent tissues.Biomed. Opt. Express6, 3217–3224 (2015)..
Xia, Q. et al. Mid-infrared photothermal microscopy: principle, instrumentation, and applications.J. Phys. Chem. B126, 8597–8613 (2022)..
Yin, J. Z. et al. Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering.Nat. Commun.12, 7097 (2021)..
Robert, H. M. L. et al. Fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale.Nat. Commun.12, 2921 (2021)..
Zhao, Z. L.&Min, W. Super-resolution photothermal microscopy.Nat. Photonics17, 292–293 (2023)..
Bai, Y. R. et al. Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption.Sci. Adv.5, eaav7127 (2019)..
He, J. P. et al. Label-free imaging of melanoma with nonlinear photothermal microscopy.Opt. Lett.40, 1141–1144 (2015)..
Jumel, J. et al. Thermal and elastic characterizations by photothermal microscopy (invited).Rev. Sci. Instrum.74, 608–611 (2003)..
Galović, S. et al. Photothermal microscopy: a step from thermal wave visualization to spatially localized thermal analysis.J. Microsc.232, 558–561 (2008)..
Heylman, K. D. et al. Optical microresonators as single-particleabsorption spectrometers.Nat. Photonics10, 788–795 (2016)..
Berciaud, S. et al. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals.Phys. Rev. Lett.93, 257402 (2004)..
Berciaud, S., Cognet, L.&Lounis, B. Photothermal absorption spectroscopy of individual semiconductor nanocrystals.Nano Lett.5, 2160–2163 (2005)..
Nakahara, Y. et al. Quantitative discrimination of silver and gold nanoparticles immobilized in transparent plastic film by photothermal microscopy with multiwavelength excitation.Chem. Lett.52, 113–115 (2023)..
Chien, M. H. et al. Single-molecule optical absorption imaging by nanomechanical photothermal sensing.Proc. Natl Acad. Sci. USA115, 11150–11155 (2018)..
Su,J., Goldberg, A. F.&Stoltz, B. M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators.Light Sci. Appl.5, e16001 (2016)..
Vollmer, F.&Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules.Nat. Methods5, 591–596 (2008)..
Arnold, S., Shopova, S. I.&Holler, S. Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism.Opt. Express18, 281–287 (2010)..
Li, C. et al. Part-per-trillion trace selective gas detection using frequency locked whispering-gallery mode microtoroids.ACS Appl. Mater. Interfaces14, 42430–42440 (2022)..
Luu, G. T. et al. An integrated approach to protein discovery and detection from complex biofluids.Mol. Cell. Proteom.22, 100590 (2023)..
Ozgur, E. et al. Ultrasensitive detection of human chorionic gonadotropin using frequency locked microtoroid optical resonators.Anal. Chem.91, 11872–11878 (2019)..
Lu, T. et al.Split Frequency Sensing Methods and Systems.https://patents.google.com/patent/US8593638B2/enhttps://patents.google.com/patent/US8593638B2/en(2013)..
Choi, G., Gin, A.&Su, J. Optical frequency combs in aqueous and air environments at visible to near-IR wavelengths.Opt. Express30, 8690–8699 (2022)..
Savchenkov, A. A. et al. Tunable optical frequency comb witha crystalline whispering gallery mode resonator.Phys. Rev. Lett.101, 093902 (2008)..
Kippenberg, T. J., Holzwarth, R.&Diddams, S. A. Microresonator-based optical frequency combs.Science332, 555–559 (2011)..
Choi, G.&Su, J. Impact of stimulated Raman scattering on dark soliton generation in a silica microresonator.J. Phys. Photonics5, 014001 (2023)..
Chen, Y. P. et al. Recent progress on optoplasmonic whispering-gallery-mode microcavities.Adv. Opt. Mater.9, 2100143 (2021)..
Vahala, K. J. Optical microcavities.Nature424, 839–846 (2003)..
Heylman, K. D. et al. Optical microresonators for sensing and transduction: a materials perspective.Adv. Mater.29, 1700037 (2017)..
Rokhsari, H. et al. Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities.IEEE J. Sel. Top. Quantum Electron.12, 96–107 (2006)..
Arnold, S. et al. Shift of whispering-gallery modes in microspheres by protein adsorption.Opt. Lett.28, 272–274 (2003)..
Ilchenko, V. S., Yao, X. S.&Maleki, L. Pigtailing the high-Qmicrosphere cavity: a simple fiber coupler for optical whispering-gallery modes.Opt. Lett.24, 723–725 (1999)..
Zhu, G. Y. et al. Research progress of gallium nitride microdisk cavity laser.Front. Mater.9, 845885 (2022)..
Ji, P. et al. In-fiber polymer microdisk resonator and its sensing applications of temperature and humidity.ACS Appl. Mater. Interfaces13, 48119–48126 (2021)..
Seemann, W. et al. Free-standing ZnSe-based microdisk resonators: influence of edge roughness on the optical quality and reducing degradation with supported geometry.Phys. Status Solid B258, 2100249 (2021)..
Hogan, L. T. et al. Toward real-time monitoring and control of single nanoparticle properties with a microbubble resonator spectrometer.ACS Nano13, 12743–12757 (2019)..
Armani, D. K. et al. Ultra-high-Qtoroid microcavity on a chip.Nature421, 925–928 (2003)..
He, L. N., Özdemir, Ş. K.&Yang, L. Whispering gallery microcavity lasers.Laser Photonics Rev.7, 60–82 (2013)..
Armani, D. et al. Electrical thermo-optic tuning of ultrahigh-Qmicrotoroid resonators.Appl. Phys. Lett.85, 5439–5441 (2004)..
Zhang, X. M., Choi, H. S.&Armani, A. M. Ultimate quality factor of silica microtoroid resonant cavities.Appl. Phys. Lett.96, 153304 (2010)..
Horak, E. H. et al. Exploring electronic structure and order in polymers via single-particle microresonator spectroscopy.Nano Lett.18, 1600–1607 (2018)..
Knapper, K. A. et al. Chip-scale fabrication of high-Qall-glass toroidal microresonators for single-particle label-free imaging.Adv. Mater.28, 2945–2950 (2016)..
Heylman, K. D.&Goldsmith, R. H. Photothermal mapping and free-space laser tuning of toroidal optical microcavities.Appl. Phys. Lett.103, 211116 (2013)..
He, L. N. et al. Oscillatory thermal dynamics in high-QPDMS-coated silica toroidal microresonators.Opt. Express17, 9571–9581 (2009)..
Leviton, D. B.&Frey, B. J. Temperature-dependent absolute refractive index measurements of synthetic fused silica.arXivhttps://doi.org/10.48550/arXiv.0805.0091https://doi.org/10.48550/arXiv.0805.0091(2006)..
Su, J. Label-free single exosome detection using frequency-locked microtoroid optical resonators.ACS Photonics2, 1241–1245 (2015)..
Hao, S.&Su, J. Noise-induced limits of detection in frequency locked optical microcavities.J. Light. Technol.38, 6393–6401 (2020)..
Su, J. Label-free single molecule detection using microtoroid optical resonators.J. Vis. Exp.106, e53180, https://doi.org/10.3791/53180 (2015)..
Suebka, S. et al. How fast it can stick: visualizing flow delivery to microtoroid biosensors.ACS Sens.6, 2700–2708 (2021)..
Suebka, S., McLeod, E.&Su, J. Ultra-high-Q free-space coupling to microtoroid resonators.Light Sci. Appl.13, 75 (2024)..
Su, T. T. J. Label-free detection of single biological molecules using microtoroid optical resonators.J. Vis. Exp.29, e53180 (2014)..
Black, E. D. An introduction to pound–drever–hall laser frequency stabilization.Am. J. Phys.69, 79–87 (2001)..
He, L. N. et al. Detecting single viruses and nanoparticles using whispering gallery microlasers.Nat. Nanotechnol.6, 428–432 (2011)..
Vollmer, F., Arnold, S.&Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode.Proc. Natl Acad. Sci. USA105, 20701–20704 (2008)..
Baaske, M. D., Foreman, M. R.&Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform.Nat. Nanotechnol.9, 933–939 (2014)..
Leduc, C. et al. A highly specific gold nanoprobe for live-cell single-molecule imaging.Nano Lett.13, 1489–1494 (2013)..
Gaiduk, A. et al. Detection limits in photothermal microscopy.Chem. Sci.1, 343–350 (2010)..
Gaiduk, A. et al. Room-temperature detection of a single molecule's absorption by photothermal contrast.Science330, 353–356 (2010)..
Xu, Y. C. et al. Low part-per-trillion, humidity resistant detection of nitric oxide using microtoroid optical resonators.ACS Appl. Mater. Interfaces16, 5120–5128 (2024)..
Reynolds, D. A., Quatieri, T. F.&Dunn, R. B. Speaker verification using adapted Gaussian mixture models.Digital Signal Process.10, 19–41 (2000)..
Reynolds, D. Gaussian mixture models. InEncyclopedia of Biometrics2nd edn, 827–832 (eds. Li, S. Z.&Jain, A. K.) (Springer, 2015).
Xuan, G. R., Zhang, W.&Chai, P. Q. EM algorithms of Gaussian mixture model and hidden Markov model.Proc. 2001 International Conference on Image Processing(Cat. No. 01CH37205)145–148 (IEEE, 2001)..
Dempster, A. P., Laird, N. M.&Rubin, D. B. Maximum likelihood from incomplete data via theEMalgorithm.J. R. Stat. Soc. Ser. B (Methodol.)39, 1–22 (1977)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution