无数据
1.University of Oxford, Department of Physics, Oxford, OX1 3PU, UK
2.University of Oxford, Department of Engineering Science, Oxford, OX1 3PJ, UK
3.Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
Ana S. Sotirova (ana.sotirova@physics.ox.ac.uk)
Bangshan Sun (b.s.shawnsuen@gmail.com)
Martin J. Booth (martin.booth@eng.ox.ac.uk)
Christopher J. Ballance (chris.ballance@physics.ox.ac.uk)
Received:01 November 2023,
Revised:15 July 2024,
Accepted:2024-07-17,
Published Online:20 August 2024,
Published:31 October 2024
Scan QR Code
Sotirova, A. S. et al. Low cross-talk optical addressing of trapped-ion qubits using a novel integrated photonic chip. Light: Science & Applications, 13, 2179-2191 (2024).
Sotirova, A. S. et al. Low cross-talk optical addressing of trapped-ion qubits using a novel integrated photonic chip. Light: Science & Applications, 13, 2179-2191 (2024). DOI: 10.1038/s41377-024-01542-x.
Individual optical addressing in chains of trapped atomic ions requires the generation of many small
closely spaced beams with low cross-talk. Furthermore
implementing parallel operations necessitates phase
frequency
and amplitude control of each individual beam. Here
we present a scalable method for achieving all of these capabilities using a high-performance integrated photonic chip coupled to a network of optical fibre components. The chip design results in very low cross-talk between neighbouring channels even at the micrometre-scale spacing by implementing a very high refractive index contrast between the channel core and cladding. Furthermore
the photonic chip manufacturing procedure is highly flexible
allowing for the creation of devices with an arbitrary number of channels as well as non-uniform channel spacing at the chip output. We present the system used to integrate the chip within our ion trap apparatus and characterise the performance of the full indi
vidual addressing setup using a single trapped ion as a light-field sensor. Our measurements showed intensity cross-talk below ~10
–3
across the chip
with minimum observed cross-talk as low as ~10
–5
.
Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74 , 4091–4094 (1995)..
Harty, T. P. et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113 , 220501 (2014)..
Ballance, C. J. et al. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117 , 060504 (2016)..
Clark, C. R. et al. High-fidelity bell-state preparation with 40 Ca + optical qubits. Phys. Rev. Lett. 127 , 130505 (2021)..
Srinivas, R. et al. High-fi delity laser-free universal control of trapped ion qubits. Nature 597 , 209–213 (2021)..
Wang, P. F. et al. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun. 12 , 233 (2021)..
An, F. A. et al. High fidelity state preparation and measurement of ion hyperfine qubits with I > 1/2. Phys. Rev. Lett. 129 , 130501 (2022)..
Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103 , 259 (1998)..
Nägerl, H. C. et al. Ion strings for quantum gates. Appl. Phys. B 66 , 603–608 (1998)..
Leu, A. D. et al. Fast, high-fidelity addressed single-qubit gates using efficient composite pulse sequences. Phys. Rev. Lett. 131 , 120601 (2023)..
Srinivas, R. et al. Coherent control of trapped-ion qubits with localized electric fields. Phys. Rev. Lett. 131 , 020601 (2023)..
Leibfried, D. Individual addressing and state readout of trapped ions utilizing rf micromotion. Phys. Rev. A 60 , R3335–R3338 (1999)..
Warring, U. et al. Individual-ion addressing with microwave field gradients. Phys. Rev. Lett. 110 , 173002 (2013)..
Wang, S. X. et al. Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap. Appl. Phys. Lett. 94 , 094103 (2009)..
Seck, C. M. et al. Single-ion addressing via trap potential modulation in global optical fields. N. J. Phys. 22 , 053024 (2020)..
Crain, S. et al. Individual addressing of trapped 171 Yb + ion qubits using a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 105 , 181115 (2014)..
Shih, C. Y. et al. Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control. NJP Quantum Inf. 7 , 57 (2021)..
Wang, Y. et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing. Phys. Rev. Lett. 125 , 150505 (2020)..
Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2 , 020343 (2021)..
Egan, L. N. Scaling Quantum Computers with Long Chains of Trapped Ions. https://iontrap.umd.edu/wp-content/uploads/2021/06/Egan_Thesis_Final.pdf https://iontrap.umd.edu/wp-content/uploads/2021/06/Egan_Thesis_Final.pdf (2021)..
Binai-Motlagh, A. et al. A guided light system for agile individual addressing of Ba + qubits with 10 −4 level intensity crosstalk. Quantum Sci. Technol. 8 , 045012 (2023)..
Timpu, F. et al. Laser-written waveguide array optimized for individual control of trapped ion qubits in a Chain. Proc 2022 European Conference on Optical Communication (ECOC), (eds. J. Leuthold, J., Harder, C., Offrein, B. & Limberger, H. ) We5.70 (Optica Publishing Group. 2022).
Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586 , 533–537 (2020)..
Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586 , 538–542 (2020)..
Sun, B. S. et al. On-chip beam rotators, adiabatic mode converters, and waveplates through low-loss waveguides with variable cross-sections. Light Sci. Appl. 11 , 214 (2022)..
Cetina, M. et al. Control of transverse motion for quantum gates on individually addressed atomic qubits. PRX Quantum 3 , 010334 (2022)..
West, A. D. et al. Tunable transverse spin–motion coupling for quantum information processing. Quantum Sci. Technol. 6 , 024003 (2021)..
Sun, B. S. et al. Fast, precise, high contrast laser writing for photonic chips with phase aberrations. Laser Photonics Rev. https://doi.org/10.1002/lpor.202300702 https://doi.org/10.1002/lpor.202300702 (2024)..
Snyder, A. W. & Love, J. D. Optical Waveguide Theory 1983rd edn, Vol. 738 (Chapman and Hall, 1983).
Wilpers, G. et al. A compact UHV package for microfabricated ion-trap arrays with direct electronic air-side access. Appl. Phys. B 111 , 21–28 (2013)..
Choonee, K., Wilpers, G. & Sinclair, A. G. Silicon microfabricated linear segmented ion traps for quantum technologies. Proc. 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 615–618 (IEEE, Kaohsiung, China, 2017).
Lin, G. D. et al. Large-scale quantum computation in an anharmonic linear ion trap. Europhys. Lett. 86 , 60004 (2009)..
Kimmel, S., Low, G. H. & Yoder, T. J. Robust calibration of a universal single-qubit gate set via robust phase estimation. Phys. Rev. A 92 , 062315 (2015)..
Rudinger, K. et al. Experimental demonstration of a cheap and accurate phase estimation. Phys. Rev. Lett. 118 , 190502 (2017)..
Souza, A. M., Álvarez, G. A. & Suter, D. Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106 , 240501 (2011)..
Flannery, J. et al. Optical crosstalk mitigation for individual addressing in a cryoge nic ion trap. Proc. 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 816–817 (Broomfield, CO, USA: IEEE, 2022).
Brown, K. R., Harrow, A. W. & Chuang, I. L. Arbitrarily accurate composite pulse sequences. Phys. Rev. A 70 , 052318 (2004)..
0
Views
15
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution