1.Department of Physics, Politecnico di Milano, 20133 Milano, Italy
2.Istituto Italiano di Tecnologia, 16163 Genova, Italy
3.Laboratoire Matériaux et Phénomènes Quantiques (MPQ), Université Paris Cité & CNRS, 75013 Paris, France
4.John Atanasoff Center for Bio and Nano Photonics (JAC BNP), 1164 Sofia, Bulgaria
5.Department of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Boulevard, 1164 Sofia, Bulgaria
6.ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Research School of Physics, Australian National University, Acton, ACT 2601, Australia
7.Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
8.Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
9.Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
10.Institut Universitaire de France (IUF), Paris, France
Giuseppe Della Valle (giuseppe.dellavalle@polimi.it)
Published:31 October 2024,
Published Online:23 August 2024,
Received:21 December 2023,
Revised:15 July 2024,
Accepted:21 July 2024
Scan QR Code
Crotti, G. et al. Giant ultrafast dichroism and birefringence with active nonlocal metasurfaces. Light: Science & Applications, 13, 2240-2250 (2024).
Crotti, G. et al. Giant ultrafast dichroism and birefringence with active nonlocal metasurfaces. Light: Science & Applications, 13, 2240-2250 (2024). DOI: 10.1038/s41377-024-01545-8.
Switching of light polarization on the sub-picosecond timescale is a crucial functionality for applications in a variety of contexts
including telecommunications
biology and chemistry. The ability to control polarization at ultrafast speed would pave the way for the development of unprecedented free-space optical links and of novel techniques for probing dynamical processes in complex systems
as chiral molecules. Such high switching speeds can only be reached with an all-optical paradigm
i.e.
engineering active platforms capable of controlling light polarization via ultrashort laser pulses. Here we demonstrate giant modulation of dichroism and birefringence in an all-dielectric metasurface
achieved at low fluences of the optical control beam. This performance
which leverages the many degrees of freedom offered by all-dielectric active metasurfaces
is obtained by combining a high-quality factor nonlocal resonance with the giant third-order optical nonlinearity dictated by photogenerated hot carriers at the semiconductor band edge.
Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light.Phys. Rev. Lett.99, 047601 (2007)..
Flamini, F., Spagnolo, N.&Sciarrino, F. Photonic quantum information processing: a review.Rep. Prog. Phys.82, 016001 (2019)..
Ye, Z. L., Sun, D. Z.&Heinz, T. F. Optical manipulation of valley pseudospin.Nat. Phys.13, 26–29 (2017)..
Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control.Nat. Phys.7, 854–856 (2011)..
Fleischer, S. et al. Molecular orientation and alignment by intense single-cycle THz pulses.Phys. Rev. Lett.107, 163603 (2011)..
Salén, P. et al. Matter manipulation with extreme terahertz light: progress in the enabling THz technology.Phys. Rep.836-837, 1–74 (2019)..
Chen, Y. et al. Multidimensional nanoscopic chiroptics.Nat. Rev. Phys.4, 113–124 (2022)..
Nguyen, L. A., He, H.&Pham-Huy, C. Chiral drugs: an overview.Int. J. Biomed. Sci.2, 85–100 (2006)..
Ma, W. et al. Chiral inorganic nanostructures.Chem. Rev.117, 8041–8093 (2017)..
Nesterov, M. L. et al. The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy.ACS Photonics3, 578–583 (2016)..
Mohammadi, E., Raziman, T. V.&Curto, A. G. Nanophotonic chirality transfer to dielectric mie resonators.Nano Lett.23, 3978–3984 (2023)..
Baykusheva, D. et al. Real-time probing of chirality during a chemical reaction.Proc. Natl Acad. Sci. USA116, 23923–23929 (2019)..
Vasa, P. et al. Ultra‐fast nano‐optics.Laser Photonics Rev.3, 483–507 (2009)..
Makarov, S. V. et al. Light-induced tuning and reconfiguration of nanophotonic structures.Laser Photonics Rev.11, 1700108 (2017)..
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures.Science354, eaag2472 (2016)..
Taghinejad, M.&Cai, W. S. All-optical control of light in micro- and nanophotonics.ACS Photonics6, 1082–1093 (2019)..
Kauranen, M.&Zayats, A. V. Nonlinear plasmonics.Nat. Photonics6, 737–748 (2012)..
Mann, S. A. et al. Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces.Optica8, 606–613 (2021)..
Schirato, A. et al. Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces.Nat. Photonics14, 723–727 (2020)..
Wang, X. L. et al. Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles.Nano Lett.15, 2633–2639 (2015)..
Yang, Y. M. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber.Nat. Photonics11, 390–395 (2017)..
Nicholls, L. H. et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials.Nat. Photonics11, 628–633 (2017)..
Taghinejad, M. et al. Ultrafast control of phase and polarization of light expedited by hot-electron transfer.Nano Lett.18, 5544–5551 (2018)..
Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.Nat. Nanotechnol.10, 770–774 (2015)..
Wang, K. D. et al. High contrast, femtosecond light polarization manipulation in epsilon-near-zero material coupled to a plasmonic nanoantenna array.ACS Photonics8, 2791–2799 (2021)..
Kildishev, A. V., Boltasseva, A.&Shalaev, V. M. Planar photonics with metasurfaces.Science339, 1232009 (2013)..
Neshev, D.&Aharonovich, I. Optical metasurfaces: new generation building blocks for multi-functional optics.LightSciAppl.7, 58 (2018)..
Chen, H. T., Taylor, A. J.&Yu, N. F. A review of metasurfaces: physics and applications.Rep. Prog. Phys.79, 076401 (2016)..
Li, G. X., Zhang, S.&Zentgraf, T. Nonlinear photonic metasurfaces.Nat. Rev. Materials2, 17010 (2017)..
Chen, W. T., Zhu, A. Y.&Capasso, F. Flat optics with dispersion-engineered metasurfaces.Nat. Rev. Materials5, 604–620 (2020)..
Zhou, Y. et al. Multiresonant nonlocal metasurfaces.Nano Lett.23, 6768–6775 (2023)..
Huang, T. Y. et al. Planar nonlinear metasurface optics and their applications.Rep. Prog. Phys.83, 126101 (2020)..
Poddubny, A. N., Neshev, D. N.&Sukhorukov, A. A. Quantum nonlinear metasurfaces. InNonlinear Meta-Optics(Eds C. De Angelis, G. Leo, D. N. Neshev, p. ) 147-180 (CRC Press, 2020).
Zou, C. J. et al. Resonant dielectric metasurfaces: active tuning and nonlinear effects.J. Phys. D: Appl. Phys.52, 373002 (2019)..
Lung, S. et al. Complex-birefringent dielectric metasurfaces for arbitrary polarization-pair transformations.ACS Photonics7, 3015–3022 (2020)..
Malek, S. C. et al. Active nonlocal metasurfaces.Nanophotonics10, 655–665 (2021)..
Shcherbakov, M. R. et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures.Nano Lett.15, 6985–6990 (2015)..
Shcherbakov, M. R. et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces.Nat. Commun.8, 17 (2017)..
Della Valle, G. et al. Nonlinear anisotropic dielectric metasurfaces for ultrafast nanophotonics.ACS Photonics4, 2129–2136 (2017)..
Krasnok, A. et al. Towards all-dielectric metamaterials and nanophotonics.Proc. SPIE 9502, Metamaterials X.950203 (Prague, Czech Republic, 2015).
Kruk, S.&Kivshar, Y. Functional meta-optics and nanophotonics governed by mie resonances.ACS Photonics4, 2638–2649 (2017)..
Chaâbani, W. et al. Large-scale and low-cost fabrication of silicon mie resonators.ACS Nano13, 4199–4208 (2019)..
Rutckaia, V. et al. Quantum dot emission driven by Mie resonances in silicon nanostructures.Nano Lett.17, 6886–6892 (2017)..
Hsu, C. W. et al. Bound states in the continuum.Nat. Rev. Mater.1, 16048 (2016)..
Koshelev, K. et al. Asymmetric metasurfaces with high-Qresonances governed by bound states in the continuum.Phys. Rev. Lett.121, 193903 (2018)..
Bennett, B. R., Soref, R. A.&Del Alamo, J. A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP.IEEE J. Quantum Electron.26, 113–122 (1990)..
Pogna, E. A. A. et al. Ultrafast, all optically reconfigurable, nonlinear nanoantenna.ACS Nano15, 11150–11157 (2021)..
Mazzanti, A. et al. All-optical modulation with dielectric nanoantennas: multiresonant control and ultrafast spatial inhomogeneities.Small Sci.1, 2000079 (2021)..
Adachi, S.GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties. Illustrated edn, 696 (World Scientific Publishing Co Pte Ltd, 1994).
Tilma, B. W. et al. Recent advances in ultrafast semiconductor disk lasers.LightSciAppl.4, e310 (2015)..
Guina, M., Rantamäki, A.&Härkönen, A. Optically pumped VECSELs: review of technology and progress.J. Phys. D: Appl. Phys.50, 383001 (2017)..
Kahle, H. et al. AlGaAs-based vertical-external-cavity surface-emitting laser exceeding 4 W of direct emission power in the 740–790 nm spectral range.Opt. Lett.43, 1578–1581 (2018)..
Crotti, G. et al. Anisotropic metasurface for ultrafast polarization control via all-optical modulation.Proc 11th International Conference on Photonics, Optics and Laser Technology.107–113 (Lisbon, Portugal, 2023).
Zhou, Q. G. et al. Ultrafast all-optical switching modulation of terahertz polarization conversion metasurfaces based on silicon.ACS Omega8, 48465–48479 (2023)..
Celebrano, M. et al. Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces.Opt. Lett.46, 2453–2456 (2021)..
Berry, H. G., Gabrielse,G.&Livingston, A. E. Measurement of the stokes parameters of light.Appl. Opt.16, 3200–3205 (1977)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution