无数据
1.John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
2.Quantum Science and Engineering, Harvard University, Cambridge, MA, USA
Yunxiang Song (ysong1@g.harvard.edu)
Kiyoul Yang (kiyoul@seas.harvard.edu)
Marko Lončar (loncar@g.harvard.edu)
Received:18 March 2024,
Revised:18 July 2024,
Accepted:2024-07-21,
Published Online:02 September 2024,
Published:31 October 2024
Scan QR Code
Song, Y. X. et al. Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators. Light: Science & Applications, 13, 2342-2352 (2024).
Song, Y. X. et al. Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators. Light: Science & Applications, 13, 2342-2352 (2024). DOI: 10.1038/s41377-024-01546-7.
Dissipative Kerr solitons from optical microresonators
commonly referred to as soliton microcombs
have been developed for a broad range of applications
including precision measurement
optical frequency synthesis
and ultra-stable microwave and millimeter wave generation
all on a chip. An important goal for microcombs is self-referencing
which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency. Further
detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation. The thin-film lithium niobate photonic platform
with its low loss
strong second- and third-order nonlinearities
as well as large Pockels effect
is ideally suited for these tasks. However
octave-spanning soliton microcombs are challenging to demonstrate on this platform
largely complicated by strong Raman effects hindering reliable fabrication of soliton devices. Here
we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate. With appropriate control over microresonator free spectral range and dissipation spectrum
we show that soliton-inhibiting Raman effects are suppressed
and soliton devices are fabricated with near-unity yield. Our work offers an unambiguous method for soliton generation on strongly Raman-active materials. Further
it anticipates monolithically integrated
self-referenced frequency standards in conjunction with established technologies
such as periodically poled waveguides and electro-optic modulators
on thin-film lithium niobate.
Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729 , 1–81 (2018)..
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13 , 158–169 (2019)..
Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2 , 153 (2019)..
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369 , eaay3676 (2020)..
Chang, L., Liu, S. T. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photonics 16 , 95–108 (2022)..
Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8 , 145–152 (2014)..
Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators. Science 361 , eaan8083 (2018)..
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557 , 81–85 (2018)..
Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photonics 15 , 516–522 (2021)..
Li, J. et al. Electro-optical frequency division and stable microwave synthesis. Science 345 , 309–313 (2014)..
Liu, J. Q. et al. P hotonic microwave generation in the X-and K-band using integrated soliton microcombs. Nat. Photonics 14 , 486–491 (2020)..
Yao, L. et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica 9 , 561–564 (2022)..
Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627 , 546–552 (2024)..
Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627 , 534–539 (2024)..
Sun, S. M. et al. Integrated optical frequency division for microwave and mmwave generation. Nature 627 , 540–545 (2024)..
Suh, M. G. et al. Microresonator soliton dual-comb spectroscopy. Science 354 , 600–603 (2016)..
Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photonics 13 , 146–157 (2019)..
Obrzud, E. et al. A microphotonic astrocomb. Nat. Photonics 13 , 31–35 (2019)..
Suh, M. G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics 13 , 25–30 (2019)..
Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546 , 274–279 (2017)..
Jørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photonics 16 , 798–802 (2022)..
Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13 , 7862 (2022)..
Shu, H. W. et al. Microcomb-driven silicon photonic systems. Nature 605 , 457–463 (2022)..
Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photonics 17 , 781–790 (2023)..
Feldmann, J. et al. Parallel convolutional pr ocessing using an integrated photonic tensor core. Nature 589 , 52–58 (2021)..
Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589 , 44–51 (2021)..
Bai, B. W. et al. Microcomb-based integrated photonic processing unit. Nat. Commun. 14 , 66 (2023)..
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581 , 164–170 (2020)..
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416 , 233–237 (2002)..
Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4 , 193–203 (2017)..
Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si 3 N 4 microresonators. Optica 4 , 684–691 (2017)..
Liu, X. W. et al. Alu minum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun. 12 , 5428 (2021)..
Weng, H. Z. et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photonics Res. 9 , 1351–1357 (2021)..
Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351 , 357–360 (2016)..
Brasch, V. et al. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl. 6 , e16202 (2017)..
Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6 , 680–685 (2019)..
Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. X 9 , 031023 (2019)..
Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624 , 267–274 (2023)..
Zhang, M. et al. Monolithic ultra-high- Q lithium niobate microring resonator. Optica 4 , 1536–1537 (2017)..
Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13 , 242–352 (2021)..
Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379 , eabj4396 (2023)..
Zhu, X. R. et al. Twenty-nine million intrinsic Q-factor monolithic microresonators on thin film lithium niobate. Photon. Res . 12 , A63–A68 (2024)..
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562 , 101–104 (2018)..
Hu, Y. W. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599 , 587–593 (2021)..
Xu, M. Y. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9 , 61–62 (2022)..
Hu, Y. W. et al. Integrated electro-optics on thin-film lithium niobate. Preprint at https://arxiv.org/abs/2404.06398 https://arxiv.org/abs/2404.06398 (2024).
Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5 , 1438–1441 (2018)..
Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7 , 40–46 (2020)..
McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun. 13 , 4532 (2022)..
Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10 , 978 (2019)..
Yu, M. J. et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci. Appl. 9 , 9 (2020)..
Zhao, Y. J. et al. Widely-tunable, multi-band Raman laser based on dispersion-managed thin-film lithium niobate microring resonators. Commun. Phys. 6 , 350 (2023)..
Gong, Z. et al. Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators. Opt. Lett. 44 , 3182–3185 (2019)..
He, Y. et al. Self-starting bi-chromatic LiNbO 3 soliton microcomb. Optica 6 , 1138–1144 (2019)..
Gao, Y. et al. Compact lithium niobate microring resonators in the ultrahigh Q / V regime. Opt. Lett. 48 , 3949–3952 (2023)..
Zhao, Z. X. et al. Passively stable 0.7-octave microcombs in thin-film lithium niobate microresonators. Chin. Opt. Lett. 22 , 051301 (2024)..
Gong, Z. et al. Near-octave lithium niobate soliton microcomb. Optica 7 , 1275–1278 (2020)..
Wan, S. et al. Photorefraction-assisted self-emergence of dissipative Kerr solitons. Laser Photonics Rev. 18 , 2300627 (2024)..
Lu, J. J. et al. Two-colour dissipative solitons and breathers in microresonator second-harmonic generation. Nat. Commun. 14 , 2798 (2023)..
Yang, C. et al. 1550-nm band soliton microcombs in Ytterbium-doped lithium-niobate microrings. Laser Photonics Rev. 17 , 2200510 (2023)..
Gong, Z. et al. Monolithic Kerr and electro-optic hybrid microcombs. Optica 9 , 1060–1065 (2022)..
He, Y. et al. High-speed tunable microwave-rate soliton microcomb. Nat. Commun. 14 , 3467 (2023)..
Song, Y. X. et al. Hybrid Kerr-electro-optic frequency combs on thin-film lithium niobate. Preprint at https://arxiv.org/abs/2402.11669 https://arxiv.org/abs/2402.11669 (2024).
He, Y. et al. Octave-spanning lithium niobate soliton microcombs. In Proceedings of Conference on Lasers and Electro-Optics (Optica Publishing Group, 2021).
Gong, Z. et al. Photonic dissipation control for Kerr soliton generation in strongly Raman-active medi a. Phys. Rev. Lett. 125 , 183901 (2020)..
Basiev, T. T. et al. Raman spectroscopy of crystals for stimulated Raman scattering. Opt. Mater. 11 , 307–314 (1999)..
Ridah, A. et al. The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO 3 . J. Phys.: Condens. Matter 9 , 9687–9693 (1997)..
Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87 , 053852 (2013)..
Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Opt. Lett. 42 , 2786–2789 (2017)..
Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36 , 3398–3400 (2011)..
Moille, G. et al. Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Opt. Lett. 44 , 4737–4740 (2019)..
He, L. Y. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett. 44 , 2314–2317 (2019)..
Stone, J. R. & Papp, S. B. Harnessing dispersion in soliton microcombs to mitigate thermal noise. Phys. Rev. Lett. 125 , 153901 (2020)..
Moille, G. et al. Parametrically driven pure-Kerr temporal solitons in a chip-integrated microcavity. Nat. Photonics 18 , 617–624 (2024)..
Yang, Q. F. et al. Stokes solitons in optical microcavities. Nat. Phys. 13 , 53–57 (2017)..
Li, Z. D. et al. Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses. Nat. Photonics 18 , 46–53 (2024)..
Lu, X. Y. et al. Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances. Photonics Res. 8 , 1676–1686 (2020)..
Yu, S. P. et al. Spontaneous pulse formation in edgeless photonic crystalre sonators. Nat. Photonics 15 , 461–467 (2021)..
Zhang, K. et al. Spectral engineering of optical microresonators in anisotropic lithium niobate crystal. Adv. Mater. 36 , 2308840 (2024)..
de Beeck, C. O. et al. Ⅲ/Ⅴ-on-lithium niobate amplifiers and lasers. Optica 8 , 1288–1289 (2021)..
Han, Y. et al. Electrically pumped widely tunable O-band hybrid lithium niobite/Ⅲ-Ⅴ laser. Opt. Lett. 46 , 5413–5416 (2021)..
Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9 , 408–411 (2022)..
Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615 , 411–417 (2023)..
Johnston, W. Jr., Kaminow, I. & Bergman, J. Jr. Stimulated Raman gain coefficients for Li 6 NbO 3 , Ba 2 NaNb 5 O 15 , and other materials. Appl. Phys. Lett. 13 , 190–193 (1968)..
Wang, P. Y. et al. Octave soliton microcombs in lithium niobate microresonators. Opt. Lett. 49 , 1729–1732 (2024)..
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution