1.John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
2.Quantum Science and Engineering, Harvard University, Cambridge, MA, USA
Yunxiang Song (ysong1@g.harvard.edu)
Kiyoul Yang (kiyoul@seas.harvard.edu)
Marko Lončar (loncar@g.harvard.edu)
Published:31 October 2024,
Published Online:02 September 2024,
Received:18 March 2024,
Revised:18 July 2024,
Accepted:21 July 2024
Scan QR Code
Song, Y. X. et al. Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators. Light: Science & Applications, 13, 2342-2352 (2024).
Song, Y. X. et al. Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators. Light: Science & Applications, 13, 2342-2352 (2024). DOI: 10.1038/s41377-024-01546-7.
Dissipative Kerr solitons from optical microresonators
commonly referred to as soliton microcombs
have been developed for a broad range of applications
including precision measurement
optical frequency synthesis
and ultra-stable microwave and millimeter wave generation
all on a chip. An important goal for microcombs is self-referencing
which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency. Further
detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation. The thin-film lithium niobate photonic platform
with its low loss
strong second- and third-order nonlinearities
as well as large Pockels effect
is ideally suited for these tasks. However
octave-spanning soliton microcombs are challenging to demonstrate on this platform
largely complicated by strong Raman effects hindering reliable fabrication of soliton devices. Here
we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate. With appropriate control over microresonator free spectral range and dissipation spectrum
we show that soliton-inhibiting Raman effects are suppressed
and soliton devices are fabricated with near-unity yield. Our work offers an unambiguous method for soliton generation on strongly Raman-active materials. Further
it anticipates monolithically integrated
self-referenced frequency standards in conjunction with established technologies
such as periodically poled waveguides and electro-optic modulators
on thin-film lithium niobate.
Pasquazi, A. et al. Micro-combs: a novel generation of optical sources.Phys. Rep.729, 1–81 (2018)..
Gaeta, A. L., Lipson, M.&Kippenberg, T. J. Photonic-chip-based frequency combs.Nat. Photonics13, 158–169 (2019)..
Fortier, T.&Baumann, E. 20 years of developments in optical frequency comb technology and applications.Commun. Phys.2, 153 (2019)..
Diddams, S. A., Vahala, K.&Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum.Science369, eaay3676 (2020)..
Chang, L., Liu, S. T.&Bowers, J. E. Integrated optical frequency comb technologies.Nat. Photonics16, 95–108 (2022)..
Herr, T. et al. Temporal solitons in optical microresonators.Nat. Photonics8, 145–152 (2014)..
Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators.Science361, eaan8083 (2018)..
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics.Nature557, 81–85 (2018)..
Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator.Nat. Photonics15, 516–522 (2021)..
Li, J. et al. Electro-optical frequency division and stable microwave synthesis.Science345, 309–313 (2014)..
Liu, J. Q. et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs.Nat. Photonics14, 486–491 (2020)..
Yao, L. et al. Soliton microwave oscillators using oversized billionQoptical microresonators.Optica9, 561–564 (2022)..
Zhao, Y. et al. All-optical frequency division on-chip using a single laser.Nature627, 546–552 (2024)..
Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator.Nature627, 534–539 (2024)..
Sun, S. M. et al. Integrated optical frequency division for microwave and mmwave generation.Nature627, 540–545 (2024)..
Suh, M. G. et al. Microresonator soliton dual-comb spectroscopy.Science354, 600–603 (2016)..
Picqué, N.&Hänsch, T. W. Frequency comb spectroscopy.Nat. Photonics13, 146–157 (2019)..
Obrzud, E. et al. A microphotonic astrocomb.Nat. Photonics13, 31–35 (2019)..
Suh, M. G. et al. Searching for exoplanets using a microresonator astrocomb.Nat. Photonics13, 25–30 (2019)..
Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications.Nature546, 274–279 (2017)..
Jørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source.Nat. Photonics16, 798–802 (2022)..
Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs.Nat. Commun.13, 7862 (2022)..
Shu, H. W. et al. Microcomb-driven silicon photonic systems.Nature605, 457–463 (2022)..
Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link.Nat. Photonics17, 781–790 (2023)..
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core.Nature589, 52–58 (2021)..
Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks.Nature589, 44–51 (2021)..
Bai, B. W. et al. Microcomb-based integrated photonic processing unit.Nat. Commun.14, 66 (2023)..
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb.Nature581, 164–170 (2020)..
Udem, T., Holzwarth, R.&Hänsch, T. W. Optical frequency metrology.Nature416, 233–237 (2002)..
Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime.Optica4, 193–203 (2017)..
Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4microresonators.Optica4, 684–691 (2017)..
Liu, X. W. et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing.Nat. Commun.12, 5428 (2021)..
Weng, H. Z. et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator.Photonics Res.9, 1351–1357 (2021)..
Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation.Science351, 357–360 (2016)..
Brasch, V. et al. Self-referenced photonic chip soliton Kerr frequency comb.Light Sci. Appl.6, e16202 (2017)..
Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock.Optica6, 680–685 (2019)..
Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork.Phys. Rev. X9, 031023 (2019)..
Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference.Nature624, 267–274 (2023)..
Zhang, M. et al. Monolithic ultra-high-Qlithium niobate microring resonator.Optica4, 1536–1537 (2017)..
Zhu, D. et al. Integrated photonics on thin-film lithium niobate.Adv. Opt. Photonics13, 242–352 (2021)..
Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum.Science379, eabj4396 (2023)..
Zhu, X. R. et al. Twenty-nine million intrinsic Q-factor monolithic microresonators on thin film lithium niobate.Photon. Res.12, A63–A68 (2024)..
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages.Nature562, 101–104 (2018)..
Hu, Y. W. et al. On-chip electro-optic frequency shifters and beam splitters.Nature599, 587–593 (2021)..
Xu, M. Y. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission.Optica9, 61–62 (2022)..
Hu, Y. W. et al. Integrated electro-optics on thin-film lithium niobate. Preprint athttps://arxiv.org/abs/2404.06398https://arxiv.org/abs/2404.06398(2024).
Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides.Optica5, 1438–1441 (2018)..
Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides.Optica7, 40–46 (2020)..
McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip.Nat. Commun.13, 4532 (2022)..
Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation.Nat. Commun.10, 978 (2019)..
Yu, M. J. et al. Raman lasing and soliton mode-locking in lithium niobate microresonators.Light Sci. Appl.9, 9 (2020)..
Zhao, Y. J. et al. Widely-tunable, multi-band Raman laser based on dispersion-managed thin-film lithium niobate microring resonators.Commun. Phys.6, 350 (2023)..
Gong, Z. et al. Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators.Opt. Lett.44, 3182–3185 (2019)..
He, Y. et al. Self-starting bi-chromatic LiNbO3soliton microcomb.Optica6, 1138–1144 (2019)..
Gao, Y. et al. Compact lithium niobate microring resonators in the ultrahighQ/Vregime.Opt. Lett.48, 3949–3952 (2023)..
Zhao, Z. X. et al. Passively stable 0.7-octave microcombs in thin-film lithium niobate microresonators.Chin. Opt. Lett.22, 051301 (2024)..
Gong, Z. et al. Near-octave lithium niobate soliton microcomb.Optica7, 1275–1278 (2020)..
Wan, S. et al. Photorefraction-assisted self-emergence of dissipative Kerr solitons.Laser Photonics Rev.18, 2300627 (2024)..
Lu, J. J. et al. Two-colour dissipative solitons and breathers in microresonator second-harmonic generation.Nat. Commun.14, 2798 (2023)..
Yang, C. et al. 1550-nm band soliton microcombs in Ytterbium-doped lithium-niobate microrings.Laser Photonics Rev.17, 2200510 (2023)..
Gong, Z. et al. Monolithic Kerr and electro-optic hybrid microcombs.Optica9, 1060–1065 (2022)..
He, Y. et al. High-speed tunable microwave-rate soliton microcomb.Nat. Commun.14, 3467 (2023)..
Song, Y. X. et al. Hybrid Kerr-electro-optic frequency combs on thin-film lithium niobate. Preprint athttps://arxiv.org/abs/2402.11669https://arxiv.org/abs/2402.11669(2024).
He, Y. et al. Octave-spanning lithium niobate soliton microcombs. InProceedings of Conference on Lasers and Electro-Optics(Optica Publishing Group, 2021).
Gong, Z. et al. Photonic dissipation control for Kerr soliton generation in strongly Raman-active media.Phys. Rev. Lett.125, 183901 (2020)..
Basiev, T. T. et al. Raman spectroscopy of crystals for stimulated Raman scattering.Opt. Mater.11, 307–314 (1999)..
Ridah, A. et al. The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3.J. Phys.: Condens. Matter9, 9687–9693 (1997)..
Chembo, Y. K.&Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators.Phys. Rev. A87, 053852 (2013)..
Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation.Opt. Lett.42, 2786–2789 (2017)..
Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip.Opt. Lett.36, 3398–3400 (2011)..
Moille, G. et al. Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs.Opt. Lett.44, 4737–4740 (2019)..
He, L. Y. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits.Opt. Lett.44, 2314–2317 (2019)..
Stone, J. R.&Papp, S. B. Harnessing dispersion in soliton microcombs to mitigate thermal noise.Phys. Rev. Lett.125, 153901 (2020)..
Moille, G. et al. Parametrically driven pure-Kerr temporal solitons in a chip-integrated microcavity.Nat. Photonics18, 617–624 (2024)..
Yang, Q. F. et al. Stokes solitons in optical microcavities.Nat. Phys.13, 53–57 (2017)..
Li, Z. D. et al. Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses.Nat. Photonics18, 46–53 (2024)..
Lu, X. Y. et al. Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances.Photonics Res.8, 1676–1686 (2020)..
Yu, S. P. et al. Spontaneous pulse formation in edgeless photonic crystalresonators.Nat. Photonics15, 461–467 (2021)..
Zhang, K. et al. Spectral engineering of optical microresonators in anisotropic lithium niobate crystal.Adv. Mater.36, 2308840 (2024)..
de Beeck, C. O. et al. Ⅲ/Ⅴ-on-lithium niobate amplifiers and lasers.Optica8, 1288–1289 (2021)..
Han, Y. et al. Electrically pumped widely tunable O-band hybrid lithium niobite/Ⅲ-Ⅴ laser.Opt. Lett.46, 5413–5416 (2021)..
Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate.Optica9, 408–411 (2022)..
Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics.Nature615, 411–417 (2023)..
Johnston, W. Jr., Kaminow, I.&Bergman, J. Jr. Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials.Appl. Phys. Lett.13, 190–193 (1968)..
Wang, P. Y. et al. Octave soliton microcombs in lithium niobate microresonators.Opt. Lett.49, 1729–1732 (2024)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution