1.School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093 Shanghai, China
2.Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093 Shanghai, China
Simone Lamon (simonelamon@usst.edu.cn)
Min Gu (gumin@usst.edu.cn)
Published:30 November 2024,
Published Online:14 September 2024,
Received:15 December 2023,
Revised:31 May 2024,
Accepted:22 July 2024
Scan QR Code
Lamon, S. et al. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. Light: Science & Applications, 13, 2454-2488 (2024).
Lamon, S. et al. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. Light: Science & Applications, 13, 2454-2488 (2024). DOI: 10.1038/s41377-024-01547-6.
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology
but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit
enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution
but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review
we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles
as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles
emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light
and exploring their implications for low-energy nanoscale applications.
Chu, S., Cui, Y.&Liu, N. The path towards sustainable energy.Nat. Mater.16, 16–22 (2017)..
Davis, S. J. et al. Net-zero emissions energy systems.Science360, eaas9793 (2018)..
Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation.Nat. Rev. Mater.3, 5–20 (2018)..
Masanet, E. et al. Recalibrating global data center energy-use estimates.Science367, 984–986 (2020)..
Cullen, D. A. et al. New roads and challenges for fuel cells in heavy-duty transportation.Nat. Energy6, 462–474 (2021)..
Suga, M. et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses.Nature517, 99–103 (2015)..
Nogales, E. The development of cryo-EM into a mainstream structural biology technique.Nat. Methods13, 24–27 (2016)..
Laissue, P. P. et al. Assessing phototoxicity in live fluorescence imaging.Nat. Methods14, 657–661 (2017)..
Koenderink, A. F., Alù, A.&Polman, A. Nanophotonics: shrinking light-based technology.Science348, 516–521 (2015)..
Pattison, P. M. et al. LEDs for photons, physiology and food.Nature563, 493–500 (2018)..
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics.Nature588, 39–47 (2020)..
Zhang, Q. M. et al. Artificial neural networks enabled by nanophotonics.Light Sci. Appl.8, 42 (2019)..
Yu, H. Y. et al. Three-dimensional direct laser writing of biomimetic neuron interfaces in the era of artificial intelligence: principles.Mater. Appl. Adv. Photonics4, 034002 (2022)..
Wang, H. et al.Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications.Adv. Funct. Mater.33, 2214211 (2023)..
Sugioka, K.&Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing.Light Sci. Appl.3, e149 (2014)..
Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry.Light Sci. Appl.5, e16133 (2016)..
Zijlstra, P., Chon, J. W. M.&Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods.Nature459, 410–413 (2009)..
Ouyang, X. et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing.Nat. Photonics15, 901–907 (2021)..
Lamon, S. et al. Neuromorphic optical data storage enabled by nanophotonics: a perspective.ACS Photonics11, 874–891 (2024)..
Wang, W. Imaging the chemical activity of single nanoparticles with optical microscopy.Chem. Soc. Rev.47, 2485–2508 (2018)..
Gu, M.Principles of Three-dimensional Imaging in Confocal Microscopes(World Scientific, 1996).
Hell, S. W. Far-field optical nanoscopy.Science316, 1153–1158 (2007)..
Schermelleh, L. et al. Super-resolution microscopy demystified.Nat. Cell Biol.21, 72–84 (2019)..
Huang, B., Babcock, H.&Zhuang, X. W. Breaking the diffraction barrier: super-resolution imaging of cells.Cell143, 1047–1058 (2010)..
Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics.Science349, aab3500 (2015)..
Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes.Science355, 606–612 (2017)..
Sigal, Y. M., Zhou, R. B.&Zhuang, X. W. Visualizing and discovering cellular structures with super-resolution microscopy.Science361, 880–887 (2018)..
Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells.Nat. Methods17, 217–224 (2020)..
Weber, M. et al. MINSTED fluorescence localization and nanoscopy.Nat. Photonics15, 361–366 (2021)..
Hell, S. W. Toward fluorescence nanoscopy.Nat. Biotechnol.21, 1347–1355 (2003)..
Yang, Z. G. et al. Super-resolution fluorescent materials: an insight into design and bioimaging applications.Chem. Soc. Rev.45, 4651–4667 (2016)..
Willets, K. A. et al. Super-resolution imaging and plasmonics.Chem. Rev.117, 7538–7582 (2017)..
Jin, D. Y. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking.Nat. Methods15, 415–423 (2018)..
Nevskyi, O. et al. Fluorescent diarylethene photoswitches—a universal tool for super-resolution microscopy in nanostructured materials.Small14, 1703333 (2018)..
Xu, Y. Z. et al. Recent advances in luminescent materials for super-resolution imagingviastimulated emission depletion nanoscopy.Chem. Soc. Rev.50, 667–690 (2021)..
Klar, T. A. et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission.Proc. Natl Acad. Sci. USA97, 8206–8210 (2000)..
Westphal, V.&Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope.Phys. Rev. Lett.94, 143903 (2005)..
Andrew, T. L., Tsai, H. Y.&Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning.Science324, 917–921 (2009)..
Mueller, P. et al. Molecular switch for sub-diffraction laser lithography by photoenol intermediate-state Cis–trans isomerization.ACS Nano11, 6396–6403 (2017)..
Hänninen, P. E., Lehtelä, L.&Hell, S. W. Two- and multiphoton excitation of conjugate-dyes using a continuous wave laser.Opt. Commun.130, 29–33 (1996)..
Schönle, A., Hänninen, P. E.&Hell, S. W. Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy.Ann. Phys.511, 115–133 (1999)..
Auzel, F. Upconversion and anti-stokes processes with F and D ions in solids.Chem. Rev.104, 139–174 (2004)..
Wang, F.&Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals.Chem. Soc. Rev.38, 976–989 (2009)..
Chen, G. Y. et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics.Chem. Rev.114, 5161–5214 (2014)..
Haase, M.&Schäfer, H. Upconverting nanoparticles.Angew. Chem. Int. Ed.50, 5808–5829 (2011)..
Naccache, R., Yu, Q.&Capobianco, J. A. The fluoride host: nucleation, growth, and upconversion of lanthanide‐doped nanoparticles.Adv. Opt. Mater.3, 482–509 (2015)..
Wang, F.&Liu, X. G. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4nanoparticles.J. Am. Chem. Soc.130, 5642–5643 (2008)..
Dong, H., Sun, L. D.&Yan, C. H. Energy transfer in lanthanide upconversion studies for extended optical applications.Chem. Soc. Rev.44, 1608–1634 (2015)..
Nadort, A., Zhao, J. B.&Goldys, E. M. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties.Nanoscale8, 13099–13130 (2016)..
Zhang, Z.&Zhang, Y. Orthogonal emissive upconversion nanoparticles: Material design and applications.Small17, 2004552 (2021)..
Su, Q. Q. et al. Six-photon upconverted excitation energy lock-in for ultraviolet-C enhancement.Nat. Commun.12, 4367 (2021)..
Wu, S. W. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals.Proc. Natl Acad. Sci. USA106, 10917–10921 (2009)..
Idris, N. M. et al. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications.Chem. Soc. Rev.44, 1449–1478 (2015)..
Gu, Z. J. et al. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications.Adv. Mater.25, 3758–3779 (2013)..
Gulzar, A. et al. Upconversion processes: versatile biological applications and biosafety.Nanoscale9, 12248–12282 (2017)..
Zhai, Y. B. et al. Infrared‐sensitive memory based on direct‐grown MoS2-upconversion‐nanoparticle heterostructure.Adv. Mater.30, 1803563 (2018)..
Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics.Science359, 679–684 (2018)..
Ma, Y. Q. et al. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae.Cell177, 243–255. e15 (2019)..
Shang, Y. F. et al. Low threshold lasing emissions from a single upconversion nanocrystal.Nat. Commun.11, 6156 (2020)..
Chen, Y. W. et al. Noninvasive in vivo 3D bioprinting.Sci. Adv.6, eaba7406 (2020)..
Shan, X. C. et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles.Nat. Nanotechnol.16, 531–537 (2021)..
Liu, X. et al. Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion.Nat. Commun.12, 5662 (2021)..
Zhou, B. et al. Controlling upconversion nanocrystals for emerging applications.Nat. Nanotechnol.10, 924–936 (2015)..
Zhu, X. H. et al. Recent progress of rare‐earth doped upconversion nanoparticles: synthesis, optimization, and applications.Adv. Sci.6, 1901358 (2019)..
Zheng, K. Z. et al. Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications.Nano Today29, 100797 (2019)..
Jethva, P. et al. Lanthanide-doped upconversion luminescent nanoparticles—Evolving role in bioimaging, biosensing, and drug delivery.Materials15, 2374 (2022)..
Fu, H. H. et al. An overview of boosting lanthanide upconversion luminescence through chemical methods and physical strategies.CrystEngComm24, 7698–7717 (2022)..
Zhou, J. J. et al. Impact of lanthanide nanomaterials on photonic devices and smart applications.Small14, 1801882 (2018)..
Chen, B.&Wang, F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles.Inorg. Chem. Front.7, 1067–1081 (2020)..
Jiang, W. et al. A comprehensive review on upconversion nanomaterials-based fluorescent sensor for environment, biology, food and medicine applications.Biosensors12, 1036 (2022)..
Malhotra, K. et al. Lanthanide-doped upconversion nanoparticles: exploring a treasure trove of NIR-mediated emerging applications.ACS Appl. Mater. Interfaces15, 2499–2528 (2023)..
Wu, Q. S. et al. Non-bleaching fluorescence emission difference microscopy using single 808-nm laser excited red upconversion emission.Opt. Express25, 30885–30894 (2017)..
Chen, C. H. et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles.Nat. Commun.9, 3290 (2018)..
Liu, Y. T. et al. Super‐resolution mapping of single nanoparticles inside tumor spheroids.Small16, 1905572 (2020)..
Chen, C. H. et al. Heterochromatic nonlinear optical responses in upconversion nanoparticles for super-resolution nanoscopy.Adv. Mater.33, 2008847 (2021)..
Liu, B. L. et al. Upconversion nonlinear structured illumination microscopy.Nano Lett.20, 4775–4781 (2020)..
Kolesov, R. et al. Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles.Phys. Rev. B84, 153413 (2011)..
Liu, Y. J. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy.Nature543, 229–233 (2017)..
Zhan, Q. Q. et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles.Nat. Commun.8, 1058 (2017)..
Pu, R. et al. Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion.Nat. Commun.13, 6636 (2022)..
Denkova, D. et al. 3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters.Nat. Commun.10, 3695 (2019)..
Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles.Nature589, 230–235 (2021)..
Liang, Y. S. et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity.Nat. Nanotechnol.17, 524–530 (2022)..
Oracz, J. et al. Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature.Nano Lett.17, 2652–2659 (2017)..
Li, Q. F., Wu, S. S. H.&Chou, K. C. Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging.Biophysical J.97, 3224–3228 (2009)..
Wen, S. H. et al. Advances in highly doped upconversion nanoparticles.Nat. Commun.9, 2415 (2018)..
Xie, X. J. et al. Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles.J. Am. Chem. Soc.135, 12608–12611 (2013)..
Wu, S.&Butt, H. J. Near-infrared-sensitive materials based on upconverting nanoparticles.Adv. Mater.28, 1208–1226 (2016)..
Han, S. Y. et al. Enhancing luminescence in lanthanide-doped upconversion nanoparticles.Angew. Chem. Int. Ed.53, 11702–11715 (2014)..
Chivian, J. S., Case, W. E.&Eden, D. D. The photon avalanche: A new phenomenon in Pr3+‐based infrared quantum counters.Appl. Phys. Lett.35, 124–125 (1979)..
Lahoz, F., Martín, I. R.&Alonso, D. Theoretical analysis of the photon avalanche dynamics in Ho3+-Yb3+codoped systems under near-infrared excitation.Phys. Rev. B71, 045115 (2005)..
Pollnau, M. et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems.Phys. Rev. B61, 3337–3346 (2000)..
Kuang, C. F. et al. Breaking the diffraction barrier using fluorescence emission difference microscopy.Sci. Rep.3, 1441 (2013)..
Zhao, G. Y. et al. Resolution enhancement of saturated fluorescence emission difference microscopy.Opt. Express24, 23596–23609 (2016)..
Huang, B. R. et al. One-scan fluorescence emission difference nanoscopy developed with excitation orthogonalized upconversion nanoparticles.Nanoscale10, 21025–21030 (2018)..
Balu, M. et al. Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media.J. Biomed. Opt.14, 010508 (2009)..
Wang, M. et al. Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain.Biomed. Opt. Express9, 3534–3543 (2018)..
Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution.Proc. Natl Acad. Sci. USA109, E135–E143 (2012)..
Huang, X. S. et al. Fast, long-term, super-resolution imaging with hessian structured illumination microscopy.Nat. Biotechnol.36, 451–459 (2018)..
Guo, Y. T. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales.Cell175, 1430–1442. e17 (2018)..
Mandula, O. et al. Line scan-structured illumination microscopy super-resolution imaging in thick fluorescent samples.Opt. Express20, 24167–24174 (2012)..
Nam, S. H. et al. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells.Angew. Chem. Int. Ed.50, 6093–6097 (2011)..
Li, X. Y. et al. 980-Nm infrared laser modulation of sodium channel kinetics in a neuron cell linearly mediated by photothermal effect.J. Biomed. Opt.19, 105002 (2014)..
York, A. G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy.Nat. Methods9, 749–754 (2012)..
Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution.Science346, 1257998 (2014)..
Thomas, B. et al. Enhanced resolution through thick tissue with structured illumination and adaptive optics.J. Biomed. Opt.20, 026006 (2015)..
Zheng, W. et al. Adaptive optics improves multiphoton super-resolution imaging.Nat. Methods14, 869–872 (2017)..
Gayen, S. K. et al. Two-photon excitation of the lowest 4f2→4f5dnear-ultraviolet transitions in Pr3+: Y3Al5O12.Phys. Rev. B45, 20–28 (1992)..
Wu, R. T. et al. Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy.Opt. Express23, 32401–32412 (2015)..
Willig, K. I. et al. STED microscopy with continuous wave beams.Nat. Methods4, 915–918 (2007)..
Han, K. Y. et al. Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light.Nano Lett.9, 3323–3329 (2009)..
Hanne, J. et al. STED nanoscopywith fluorescent quantum dots.Nat. Commun.6, 7127 (2015)..
Wang, F. et al. Tuning upconversion through energy migration in core-shell nanoparticles.Nat. Mater.10, 968–973 (2011)..
Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement.Science320, 246–249 (2008)..
Schneider, J. et al. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics.Nat. Methods12, 827–830 (2015)..
Peng, X. Y. et al. Fast upconversion super-resolution microscopy with 10 μs per pixel dwell times.Nanoscale11, 1563–1569 (2019)..
Wang, J. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level.Nat. Mater.13, 157–162 (2014)..
Liu, Y. T. et al. Population control of upconversion energy transfer for stimulation emission depletion nanoscopy.Adv. Sci.10, 2205990 (2023)..
Caillat, L. et al. Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy.Appl. Phys. Lett.102, 143114 (2013)..
Wang, B. J. et al. Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals.Opt. Express24, A302–A311 (2016)..
Zhao, Y. X. et al. Optically investigating Nd3+-Yb3+cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging.Biomed. Opt. Express6, 838–848 (2015)..
Chen, X. D. et al. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.Opt. Lett.43, 699–702 (2018)..
Wang, G. F. et al. Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+microcrystals.Opt. Express16, 11907–11914 (2008)..
Hennig, S. et al. Quantum dot triexciton imaging with three-dimensional subdiffraction resolution.Nano Lett.9, 2466–2470 (2009)..
Deng, H. et al. Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape.J. Am. Chem. Soc.130, 2032–2040 (2008)..
Levy, E. S. et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging.ACS Nano10, 8423–8433 (2016)..
Fernandez-Bravo, A. et al. Continuous-wave upconverting nanoparticle microlasers.Nat. Nanotechnol.13, 572–577 (2018)..
Bednarkiewicz, A. et al. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging.Nanoscale Horiz.4, 881–889 (2019)..
Gamelin, D. R., Lüthi, S. R.&Güdel, H. U. The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices.The.J. Phys. Chem. B104, 11045–11057 (2000)..
Goldner, P.&Pelle, F. Photon avalanche fluorescence and lasers.Opt. Mater.5, 239–249 (1996)..
Bünzli, J. C. G.&Piguet, C. Taking advantage of luminescent lanthanide ions.Chem. Soc. Rev.34, 1048–1077 (2005)..
Zhou, B. et al. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice.Nat. Photonics14, 760–766 (2020)..
Koch, M. E., Kueny, A. W.&Case, W. E. Photon avalanche upconversion laser at 644 nm.Appl. Phys. Lett.56, 1083–1085 (1990)..
Scheife, H. et al. Advances in up-conversion lasers based on Er3+and Pr3+.Opt. Mater.26, 365–374 (2004)..
Kück, S. et al. Avalanche up-conversion processes in Pr, Yb-doped materials.J. Alloy. Compd.300-301, 65–70 (2000)..
Osiac, E. et al. Spectroscopic characterisation of the upconversion avalanche mechanism in Pr3+, Yb3+: BaY2F8.Opt. Mater.24, 537–545 (2003)..
Dong, H., Sun, L. D.&Yan, C. H. Lanthanide-doped upconversion nanoparticles for super-resolution microscopy.Front. Chem.8, 619377 (2021)..
Xu, R. et al. Lanthanide-doped upconversion nanoparticles for biological super-resolution fluorescence imaging.Cell Rep. Phys. Sci.3, 100922 (2022)..
Mettenbrink, E. M., Yang, W.&Wilhelm, S. Bioimaging with upconversion nanoparticles.Adv. Photonics Res.3, 2200098 (2022)..
Wang, F. et al. Upconversion nanoparticles in biological labeling, imaging, and therapy.Analyst135, 1839–1854 (2010)..
Vetrone, F. et al. Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+upconverting nanoparticles.Nanoscale2, 495–498 (2010)..
Zeng, X. et al. Visualization of intra‐neuronal motor protein transport through upconversion microscopy.Angew. Chem.131, 9363–9369 (2019)..
Wang, F. et al. Microscopic inspection and tracking of single upconversion nanoparticles in living cells.Light Sci. Appl.7, 18007–18007 (2018)..
Sedlmeier, A.&Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications.Chem. Soc. Rev.44, 1526–1560 (2015)..
Gu, B.&Zhang, Q. C. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems.Adv. Sci.5, 1700609 (2018)..
Ge, H. et al. Sequence‐dependent DNA functionalization of upconversion nanoparticles and their programmable assemblies.Angew. Chem. Int. Ed.59, 8133–8137 (2020)..
Park, Y. I. et al. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.Chem. Soc. Rev.44, 1302–1317 (2015)..
Fujita, K. et al. High-resolution confocal microscopy by saturated excitation of fluorescence.Phys. Rev. Lett.99, 228105 (2007)..
Harke, B. et al. Three-dimensional nanoscopy of colloidal crystals.Nano Lett.8, 1309–1313 (2008)..
Schmidt, R. et al. Spherical nanosized focal spot unravels the interior of cells.Nat. Methods5, 539–544 (2008)..
Aquino, D. et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores.Nat. Methods8, 353–359 (2011)..
Curdt, F. et al. isoSTED nanoscopy with intrinsic beam alignment.Opt. Express23, 30891–30903 (2015)..
Song, C. X. et al. Upconversion nanoparticles for bioimaging.Nanotechnol. Rev.6, 233–242 (2017)..
Gnach, A. et al. Upconverting nanoparticles: assessing the toxicity.Chem. Soc. Rev.44, 1561–1584 (2015)..
Sun, Y. et al. The biosafety of lanthanide upconversion nanomaterials.Chem. Soc. Rev.44, 1509–1525 (2015)..
Yang, B., Chen, H., Zheng, Z.&Li, G. Application of upconversion rare earth fluorescent nanoparticles in biomedical drug delivery system.J. Lumin.223, 117226 (2020)..
Mironova, K. E. et al. Ultraviolet phototoxicity of upconversion nanoparticles illuminated with near-infrared light.Nanoscale9, 14921–14928 (2017)..
Oliveira, H. et al. Critical considerations on the clinical translation of upconversion nanoparticles (UCNPs): recommendations from the European upconversion network (COST Action CM1403).Adv. Healthc. Mater.8, 1801233 (2019)..
Yu, J. et al. Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYF4: Yb, Er upconversion nanoparticles in mice via different administration routes.Nanoscale9, 4497–4507 (2017)..
Yu, Z. S. et al. Y1-receptor–ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity.Nanoscale10, 17038–17052 (2018)..
Zhou, M. Z. et al. The bioavailability, biodistribution, and toxic effects of silica-coated upconversion nanoparticles in vivo.Front. Chem.7, 218 (2019)..
Bastos, V. et al. Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings.Sci. Rep.12, 3770 (2022)..
Del Rosal, B.&Jaque, D. Upconversion nanoparticles for in vivo applications: limitations and future perspectives.Methods Appl. Fluorescence7, 022001 (2019)..
Huang, K., Idris, N. M.&Zhang, Y. Engineering of lanthanide‐doped upconversion nanoparticles for optical encoding.Small12, 836–852 (2016)..
Lin, G. G. et al. The quest for optical multiplexing in bio-discoveries.Chem4, 997–1021 (2018)..
Ren, W. et al. Optical nanomaterials and enabling technologies for high‐security‐level anticounterfeiting.Adv. Mater.32, 1901430 (2020)..
Lu, Y. Q. et al. Tunable lifetime multiplexing using luminescent nanocrystals.Nat. Photonics8, 32–36 (2014)..
Wang, Y. et al. Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution.Nanoscale8, 6666–6673 (2016)..
Liu, X. W. et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting.Nat. Commun.8, 899 (2017)..
Li, X. Y. et al. Energy migration upconversion in manganese(II)-doped nanoparticles.Angew. Chem. Int. Ed.54, 13312–13317 (2015)..
Liu, X. W. et al. Tuning long‐lived Mn(II) upconversion luminescence through alkaline‐earth metal doping andenergy‐level tailoring.Adv. Opt. Mater.7, 1900519 (2019)..
Zhou, L. et al. High‐capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection.Angew. Chem.130, 13006–13011 (2018)..
Li, X. M. et al. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence.Angew. Chem. Int. Ed.55, 2464–2469 (2016)..
Tessitore, G. et al. Intrinsic time‐tunable emissions in core-shell upconverting nanoparticle systems.Angew. Chem.131, 9844–9853 (2019)..
Liu, X. et al. Independent luminescent lifetime and intensity tuning of upconversion nanoparticles by gradient doping for multiplexed encoding.Angew. Chem.133, 7117–7121 (2021)..
Liu, H. C. et al. Phase angle encoded upconversion luminescent nanocrystals for multiplexing applications.Nanoscale9, 1676–1686 (2017)..
Liao, J. Y. et al. Preselectable optical fingerprints of heterogeneous upconversion nanoparticles.Nano Lett.21, 7659–7668 (2021)..
LeCun, Y., Bengio, Y.&Hinton, G. Deep learning.Nature521, 436–444 (2015)..
Schmidhuber, J. Deep learning in neural networks: an overview.Neural Netw.61, 85–117 (2015)..
Liao, J. Y. et al. Optical fingerprint classification of single upconversion nanoparticles by deep learning.J. Phys. Chem. Lett.12, 10242–10248 (2021)..
Song, Y. P. et al. Energy migration control of multimodal emissions in an Er3+‐doped nanostructure for information encryption and deep‐learning decoding.Angew. Chem.133, 23983–23989 (2021)..
Song, Y. P. et al. Deep learning fluorescence imaging of visible to NIR‐II based on modulated multimode emissions lanthanide nanocrystals.Adv. Funct. Mater.32, 2206802 (2022)..
Liu, B. L. et al. Multiplexed structured illumination super-resolution imaging with lifetime-engineered upconversion nanoparticles.Nanoscale Adv.4, 30–38 (2022)..
Downing, E. et al. A three-color, solid-state, three-dimensional display.Science273, 1185–1189 (1996)..
Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping.Nature463, 1061–1065 (2010)..
Zhou, L. et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers.Nat. Commun.6, 6938 (2015)..
Chen, H. W. et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives.Light Sci. Appl.7, 17168 (2018)..
Huang, Y. G. et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives.Light Sci. Appl.9, 105 (2020)..
Deng, R. R. et al. Temporal full-colour tuning through non-steady-state upconversion.Nat. Nanotechnol.10, 237–242 (2015)..
Zhang, C. et al. White-light emission from an integrated upconversion nanostructure: toward multicolor displays modulated by laser power.Angew. Chem. Int. Ed.54, 11531–11535 (2015)..
Park, B. J. et al. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides.Sci. Rep.7, 45659 (2017)..
Gao, L. X. et al. Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles.Nanoscale12, 18595–18599 (2020)..
Wen, S. H. et al. Nanorods with multidimensional optical information beyond the diffraction limit.Nat. Commun.11, 6047 (2020)..
Liu, D. M. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals.Nat. Commun.7, 10254 (2016)..
Liu, X. W. et al. Hedgehog‐like upconversion crystals: controlled growth and molecular sensing at single‐particle level.Adv. Mater.29, 1702315 (2017)..
Lei, Z. D. et al. An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles.Adv. Mater.32, 1906225 (2020)..
Liu, D. M. et al. Low-temperature-induced controllable transversal shell growth of NaLnF4nanocrystals.Nanomaterials11, 654 (2021)..
Gu, M., Zhang, Q. M.&Lamon, S. Nanomaterials for optical data storage.Nat. Rev. Mater.1, 16070 (2016)..
Yu, J. B. et al. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials.Nanoscale12, 23391–23423 (2020)..
Lamon, S., Zhang, Q. M.&Gu, M. Nanophotonics-enabled optical data storage in the age of machine learning.APL Photonics6, 110902 (2021)..
Zhao, M. et al. A 3D nanoscale optical disk memory with petabit capacity.Nature626, 772–778 (2024)..
Zhang, C. et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout.Adv. Mater.22, 633–637 (2010)..
Zheng, K. Z. et al. Rewritable optical memory through high-registry orthogonal upconversion.Adv. Mater.30, 1801726 (2018)..
Kim, B. et al. Reversible photochemical switching via plasmonically enhanced upconversion photoluminescence.Adv. Opt. Mater.9, 2100776 (2021)..
Feng, Z. W. et al. Laser‐splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption.Adv. Opt. Mater.7, 1900610 (2019)..
Hu, L. D. et al. Orthogonal multiplexed luminescence encoding with near‐infrared rechargeable upconverting persistent luminescence composites.Adv. Opt. Mater.5, 1700680 (2017)..
Xie, Y. et al. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage.Light Sci. Appl.11, 150 (2022)..
Fischer, J.&Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited].Opt. Mater. Express1, 614–624 (2011)..
Wollhofen, R. et al. 120 nm resolution and 55 nm structure size in STED-lithography.Opt. Express21, 10831–10840 (2013)..
Li, L. J. et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization.Science324, 910–913 (2009)..
Scott, T. F. et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography.Science324, 913–917 (2009)..
Gan, Z. S. et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size.Nat. Commun.4, 2061 (2013)..
Harke, B. et al. Polymerization inhibition by triplet state absorption for nanoscale lithography.Adv. Mater.25, 904–909 (2013)..
Lamon, S. et al. Nanoscale optical writing through upconversion resonance energy transfer.Sci. Adv.7, eabe2209 (2021)..
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films.Science306, 666–669 (2004)..
Zhu, Y. W. et al. Graphene and graphene oxide: synthesis, properties, and applications.Adv. Mater.22, 3906–3924 (2010)..
Li, X. P. et al. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording.Sci. Rep.3, 2819 (2013)..
Li, X. P. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images.Nat. Commun.6, 6984 (2015)..
Lamon, S. et al. Millisecond-timescale, high-efficiency modulation of upconversion luminescence by photochemically derived graphene.Adv. Opt. Mater.7, 1901345 (2019)..
Kim, J. et al. Visualizing graphene based sheets by fluorescence quenching microscopy.J. Am. Chem. Soc.132, 260–267 (2010)..
Stöhr, R. J. et al. Super-resolution fluorescence quenching microscopy of graphene.ACS Nano6, 9175–9181 (2012)..
Gu, M.&Li, X. P. The road to multi-dimensional bit-by-bit optical data storage.Opt. Photonics N.21, 28–33 (2010)..
Gu, M., Li, X. P.&Cao, Y. Y. Optical storage arrays: a perspective for future big data storage.Light Sci. Appl.3, e177 (2014)..
Wang, G. F., Peng, Q.&Li, Y. D. Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+nanocrystals.J. Am. Chem. Soc.131, 14200–14201 (2009)..
Liu, Q. et al. Sub-10 nm hexagonal lanthanide-doped NaLuF4upconversion nanocrystals for sensitive bioimaging in vivo.J. Am. Chem. Soc.133, 17122–17125 (2011)..
Jalani, G. et al. Seeing, targeting and delivering with upconverting nanoparticles.J. Am. Chem. Soc.140, 10923–10931 (2018)..
Zhang, Y. et al. Ultrasmall-superbright neodymium-upconversion nanoparticles via energy migration manipulation and lattice modification: 808 nm-activated drug release.ACS Nano11, 2846–2857 (2017)..
Quintanilla, M. et al. Light management in upconverting nanoparticles: ultrasmall core/shell architectures to tune the emission color.ACS Photonics1, 662–669 (2014)..
Rabouw, F. T. et al. Quenching pathways in NaYF4: Er3+, Yb3+upconversion nanocrystals.ACS Nano12, 4812–4823 (2018)..
Bian, W. J. et al. Direct identification of surface defects and their influence on the optical characteristics of upconversion nanoparticles.ACS Nano12, 3623–3628 (2018)..
Ma, C. S. et al. Optimal sensitizer concentration in single upconversion nanocrystals.Nano Lett.17, 2858–2864 (2017)..
Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging.Nat. Nanotechnol.9, 300–305 (2014)..
Li, C. X. et al. Current progress in the controlled synthesis and biomedical applications of ultrasmall (<10 nm) NaREF4 nanoparticles.Dalton Trans.47, 8538–8556 (2018)..
Joshi, T., Mamat, C.&Stephan, H. Contemporary synthesis of ultrasmall (sub‐10 nm) upconverting nanomaterials.ChemistryOpen9, 703–712 (2020)..
Zou, W. Q. et al. Broadband dye-sensitized upconversion of near-infrared light.Nat. Photonics6, 560–564 (2012)..
Garfield, D. J. et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission.Nat. Photonics12, 402–407 (2018)..
Wang, X. D. et al. Dye-sensitized lanthanide-doped upconversion nanoparticles.Chem. Soc. Rev.46, 4150–4167 (2017)..
Han, S. Y. et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright.Nature587, 594–599 (2020)..
Han, S. Y. et al. Photon upconversion through triplet exciton-mediated energy relay.Nat. Commun.12, 3704 (2021)..
Xu, H. et al. Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices.Nat. Photonics15, 732–737 (2021)..
Chen, B.&Wang, F. Emerging frontiers of upconversion nanoparticles.Trends Chem.2, 427–439 (2020)..
Wilhelm, S. Perspectives for upconverting nanoparticles.ACS Nano11, 10644–10653 (2017)..
Tessitore, G. et al. Recent insights into upconverting nanoparticles: spectroscopy, modeling, and routes to improved luminescence.Nanoscale11, 12015–12029 (2019)..
Liu, Q. et al. Single upconversion nanoparticle imaging at sub-10 W cm-2irradiance.Nat. Photonics12, 548–553 (2018)..
Liu, Y. T. et al. On-chip mirror enhanced multiphoton upconversion super-resolution microscopy.Nano Lett.23, 5514–5519 (2023)..
Liu, Y. T. et al. Axial localization and tracking of self-interference nanoparticles by lateral point spread functions.Nat. Commun.12, 2019 (2021)..
Shin, K. et al. Distinct mechanisms for the upconversion of NaYF4: Yb3+, Er3+nanoparticles revealed by stimulated emission depletion.Phys. Chem. Chem. Phys.19, 9739–9744 (2017)..
Zhang, H. X. et al. Depleted upconversion luminescence in NaYF4: Yb3+, Tm3+nanoparticles via simultaneous two-wavelength excitation.Phys. Chem. Chem. Phys.19, 17756–17764 (2017)..
Guo, X. et al. Achieving low-power single-wavelength-pair nanoscopy with NIR-II continuous-wave laser for multi-chromatic probes.Nat. Commun.13, 2843 (2022)..
Shen, J. et al. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm.Adv. Opt. Mater.1, 644–650 (2013)..
Caro, P. et al. Interpretation of the optical absorption spectrum and of the paramagnetic susceptibility of neodymium A-type sesquioxide.J. Chem. Phys.70, 2542–2549 (1979)..
De Camillis, S. et al. Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance.Nanoscale12, 20347–20355 (2020)..
Mei, S. et al. Networking state of ytterbium ions probing the origin of luminescence quenching and activation in nanocrystals.Adv. Sci.8, 2003325 (2021)..
Bednarkiewicz, A., Chan, E. M.&Prorok, K. Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles.Nanoscale Adv.2, 4863–4872 (2020)..
Dudek, M. et al. Size‐dependent photon avalanching in Tm3+doped LiYF4Nano, micro, and bulk crystals.Adv. Opt. Mater.10, 2201052 (2022)..
Zhang, M. R. et al. Lanthanide-doped KMgF3upconversion nanoparticles for photon avalanche luminescence with giant nonlinearities.Nano Lett.23, 8576–8584 (2023)..
De Boer, P., Hoogenboom, J. P.&Giepmans, B. N. G. Correlated light and electron microscopy: ultrastructure lights up!Nat. Methods12, 503–513 (2015)..
Hauser, M. et al. Correlative super-resolution microscopy: new dimensions and new opportunities.Chem. Rev.117, 7428–7456 (2017)..
Plöschner, M. et al. Simultaneous super-linear excitation-emission and emission depletion allows imaging of upconversion nanoparticles with higher sub-diffraction resolution.Opt. Express28, 24308–24326 (2020)..
Chen, X. et al. Photon upconversion in core-shell nanoparticles.Chem. Soc. Rev.44, 1318–1330 (2015)..
Zhao, J. B. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence.Nat. Nanotechnol.8, 729–734 (2013)..
Wang, F., Wang, J.&Liu, X. G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles.Angew. Chem. Int. Ed.49, 7456–7460 (2010)..
Johnson, N. J. J. et al. Direct evidencefor coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals.J. Am. Chem. Soc.139, 3275–3282 (2017)..
Zhang, W. H., Ding, F.&Chou, S. Y. Large enhancement of upconversion luminescence of NaYF4: Yb3+/Er3+nanocrystal by 3D plasmonic Nano‐antennas.Adv. Mater.24, OP236–OP241 (2012)..
He, J. J. et al. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2: Yb3+, Er3+hybrid core-shell-satellite nanostructures.Light Sci. Appl.6, e16217 (2017)..
Wu, Y. M. et al. Upconversion superburst with sub-2 μs lifetime.Nat. Nanotechnol.14, 1110–1115 (2019)..
Ji, Y. N. et al. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection.Light Sci. Appl.9, 184 (2020)..
Zhou, J. J. et al. Activation of the surface dark-layer to enhance upconversion in a thermal field.Nat. Photonics12, 154–158 (2018)..
Liang, L. L. et al. Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles.Nat. Nanotechnol.16, 975–980 (2021)..
Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments.Nature533, 73–76 (2016)..
Tao, H. C. et al. Nanoparticle synthesis assisted by machine learning.Nat. Rev. Mater.6, 701–716 (2021)..
Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks.Sci. Adv.4, eaar4206 (2018)..
Wang, Y. et al. Remote manipulation of upconversion luminescence.Chem. Soc. Rev.47, 6473–6485 (2018)..
Lee, C. et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching.Nature618, 951–958 (2023)..
Mi, Z. H. et al. Subwavelength imaging through ion-beam-induced upconversion.Nat. Commun.6, 8832 (2015)..
Hao, J. H., Zhang, Y.&Wei, X. H. Electric‐induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3: Yb/Er thin films.Angew. Chem. Int. Ed.50, 6876–6880 (2011)..
Mundoor, H.&Smalyukh, I. I. Mesostructured composite materials with electrically tunable upconverting properties.Small11, 5572–5580 (2015)..
Wu, Y. M. et al. Dynamic upconversion multicolour editing enabled by molecule-assisted opto-electrochemical modulation.Nat. Commun.12, 2022 (2021)..
Liu, Y. X. et al. Magnetic tuning of upconversion luminescence in lanthanide‐doped bifunctional nanocrystals.Angew. Chem.125, 4462–4465 (2013)..
All, A. H. et al. Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation.Adv. Mater.31, 1803474 (2019)..
Yu, H. Y. et al. Neuron‐inspired Steiner tree networks for 3D low‐density metastructures.Adv. Sci.8, 2100141 (2021)..
Goi, E. et al. Perspective on photonic memristive neuromorphic computing.PhotoniX1, 3 (2020)..
Wen, S. H. et al. Future and challenges for hybrid upconversion nanosystems.Nat. Photonics13, 828–838 (2019)..
Lee, J. et al. Universal process-inert encoding architecture for polymer microparticles.Nat. Mater.13, 524–529 (2014)..
Zhao, J. B. et al. Upconversion nanocrystal‐doped glass: a new paradigm for photonic materials.Adv. Opt. Mater.4, 1507–1517 (2016)..
Fan, Y., Liu, L.&Zhang, F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures.Nano Today25, 68–84 (2019)..
Zhang, Y., Zhu, X. H.&Zhang, Y. Exploring heterostructured upconversion nanoparticles: from rational engineering to diverse applications.ACS Nano15, 3709–3735 (2021)..
Du, K. M. et al. Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications.Light Sci. Appl.11, 222 (2022)..
Jiao, Y. R. et al. Controllable synthesis of upconversion nanophosphors toward scale-up productions.Part. Part. Syst. Charact.37, 2000129 (2020)..
Li, Y. et al. Controlled synthesis and tunable upconversion luminescence of NaYF4: Yb3+/Er3+nanocrystals by Pb2+tridoping.RSC Adv.3, 1683–1686 (2013)..
Rinkel, T. et al. Ostwald-ripening and particle size focussing of sub-10 nm NaYF4upconversion nanocrystals.Nanoscale6, 14523–14530 (2014)..
Zhao, Q. et al. β-NaGdF4nanotubes: one-pot synthesis and luminescence properties.Dalton Trans.44, 3745–3752 (2015)..
Rossetti, I.&Compagnoni, M. Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: flow chemistry.Chem. Eng. J.296, 56–70 (2016)..
Qian, F. Smart process manufacturing systems: deep integration of artificial intelligence and process manufacturing.Engineering5, 981 (2019)..
Mao, S. et al. Opportunities and challenges of artificial intelligence for green manufacturing inthe process industry.Engineering5, 995–1002 (2019)..
Gonzalez-Moragas, L. et al. Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition.Chem. Eng. J.281, 87–95 (2015)..
Saldanha, P. L., Lesnyak, V.&Manna, L. Large scale syntheses of colloidal nanomaterials.Nano Today12, 46–63 (2017)..
You, W. W. et al. Large-scale synthesis of uniform lanthanide-doped NaREF4upconversion/downshifting nanoprobes for bioapplications.Nanoscale10, 11477–11484 (2018)..
Liu, D. et al. Continuous synthesis of ultrasmall core-shell upconversion nanoparticles via a flow chemistry method.Nano Res.15, 1199–1204 (2022)..
Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung.Arch. Mikroskopische Anat.9, 413–468 (1873)..
Richards, B.&Wolf, E. Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system.Proc. R. Soc. A: Math., Phys. Eng. Sci.253, 358–379 (1959)..
Gu, M.Advanced Optical Imaging Theory(Springer, 2000).
Lakowicz, J. R.Principles of Fluorescence Spectroscopy(Springer, 2006).
Göppert-Mayer, M. Über elementarakte mit zwei quantensprüngen.Ann. Phys.401, 273–294 (1931)..
Denk, W., Strickler, J. H.&Webb, W. W. Two-photon laser scanning fluorescence microscopy.Science248, 73–76 (1990)..
Zipfel, W. R., Williams, R. M.&Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences.Nat. Biotechnol.21, 1369–1377 (2003)..
Hoover, E. E.&Squier, J. A. Advances in multiphoton microscopy technology.Nat. Photonics7, 93–101 (2013)..
Centonze, V. E.&White, J. G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging.Biophys. J.75, 2015–2024 (1998)..
Schilders, S. P.&Gu, M. Limiting factors on image quality in imaging through turbid media under single-photon and two-photon excitation.Microsc. Microanal.6, 156–160 (2000)..
Hell, S. W.&Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy.Opt. Lett.19, 780–782 (1994)..
Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.J. Microsc.198, 82–87 (2000)..
Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution.Proc. Natl Acad. Sci. USA102, 13081–13086 (2005)..
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution.Science313, 1642–1645 (2006)..
Rust, M. J., Bates, M.&Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).Nat. Methods3, 793–796 (2006)..
Fölling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return.Nat. Methods5, 943–945 (2008)..
Sahl, S. J., Hell, S. W.&Jakobs, S. Fluorescence nanoscopy in cell biology.Nat. Rev. Mol. Cell Biol.18, 685–701 (2017)..
Hell, S. W. Strategy for far-field optical imaging and writing without diffraction limit.Phys. Lett. A326, 140–145 (2004)..
Hofmann, M. et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins.Proc. Natl Acad. Sci. USA102, 17565–17569 (2005)..
Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP.Nature478, 204–208 (2011)..
Vicidomini, G., Bianchini, P.&Diaspro, A. STED super-resolved microscopy.Nat. Methods15, 173–182 (2018)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution