1.School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing 100081, China
2.Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China
Lingling Huang (huanglingling@bit.edu.cn)
Published:30 September 2024,
Published Online:16 August 2024,
Received:02 January 2024,
Revised:02 July 2024,
Accepted:22 July 2024
Scan QR Code
Muhammad, N. et al. Radiationless optical modes in metasurfaces: recent progress and applications. Light: Science & Applications, 13, 1720-1740 (2024).
Muhammad, N. et al. Radiationless optical modes in metasurfaces: recent progress and applications. Light: Science & Applications, 13, 1720-1740 (2024). DOI: 10.1038/s41377-024-01548-5.
Non-radiative optical modes attracted enormous attention in optics due to strong light confinement and giant Q-factor at its spectral position. The destructive interference of multipoles leads to zero net-radiation and strong field trapping. Such radiationless states disappear in the far-field
localize enhanced near-field and can be excited in nano-structures. On the other hand
the optical modes turn out to be completely confined due to no losses at discrete point in the radiation continuum
such states result in infinite Q-factor and lifetime. The radiationless states provide a suitable platform for enhanced light matter interaction
lasing
and boost nonlinear processes at the state regime. These modes are widely investigated in different material configurations for various applications in both linear and nonlinear metasurfaces which are briefly discussed in this review.
Chen, G., Wen, Z. Q.&Qiu, C. W. Superoscillation: from physics to optical applications.Light Sci. Appl.8, 56 (2019)..
Limonov, M. F. et al. Fano resonances in photonics.Nat. Photonics11, 543–554 (2017)..
Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices.Nat. Rev. Mater.6, 488–507 (2021)..
Li, G. X., Zhang, S.&Zentgraf, T. Nonlinear photonic metasurfaces.Nat. Rev. Mater.2, 17010 (2017)..
Neshev, D.&Aharonovich, I. Optical metasurfaces: new generation building blocks for multi-functional optics.Light Sci. Appl.7, 58 (2018)..
Ni, X. et al. Metasurface holograms for visible light.Nat. Commun.4, 2807 (2013)..
Qiu, C. W. et al. Quo vadis, metasurfaces?Nano Lett.21, 5461–5474 (2021)..
Kuznetsov, A. I. et al. Roadmap for optical metasurfaces.ACS Photonics11, 816–865 (2024)..
Zhang, J. C. et al. Electromagnetic wave tailoring: from one dimension to multiple dimensions.Electromagn. Sci.1, 0030131 (2023)..
Ma, Q. et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform.eLight2, 11 (2022)..
Li, L. et al. Intelligent metasurfaces: control, communication and computing.eLight2, 7 (2022)..
Qin, J. et al. Metasurface micro/nano-optical sensors: principles and applications.ACS Nano16, 11598–11618 (2022)..
Li, L. et al. Intelligent metasurfaces: control, communication and computing.eLight2, 7 (2023)..
Reed, G. T. et al. Silicon optical modulators.Nat. Photonics4, 518–526 (2010)..
Hong, X. M. et al. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides.Research2020, 9085782 (2020)..
Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency.Nat. Nanotechnol.10, 308–312 (2015)..
Yu, H. et al. Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system.Nat. Commun.14, 3534 (2023)..
Bao, Y. J. et al. Point-source geometric metasurface holography.Nano Lett.21, 2332–2338 (2021)..
Deng, Z. L. et al. Diatomic metasurface for vectorial holography.Nano Lett.18, 2885–2892 (2018)..
Huang, K. et al. Silicon multi-meta-holograms for the broadband visible light.Laser Photonics Rev.10, 500–509 (2016)..
Chen, M. K. et al. Artificial intelligence in meta-optics.Chem. Rev.122, 15356–15413 (2022)..
Ding, X. M. et al. Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency.Adv. Mater.27, 1195–1200 (2015)..
Zheng, G. X. et al. Dual field-of-view step-zoom metalens.Opt. Lett.42, 1261–1264 (2017)..
Chen, K. et al. A reconfigurable active Huygens' metalens.Adv. Mater.29, 1606422 (2017)..
Hao, C. L. et al. Single-layer aberration-compensated flat lens for robust wide-angle imaging.Laser Photonics Rev.14, 2000017 (2020)..
Chen, J. W. et al. Tungsten disulfide–gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region.Nano Lett.18, 1344–1350 (2018)..
Khaidarov, E. et al. Control of LED emission with functional dielectric metasurfaces.Laser Photonics Rev.14, 1900235 (2020)..
Chen, Y. et al. Compact spin-valley-locked perovskite emission.Nat. Mater.22, 1065–1070 (2023)..
Kodigala, A. et al. Lasing action from photonic bound states in continuum.Nature541, 196–199 (2017)..
Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays.Nat. Nanotechnol.13, 1042–1047, https://doi.org/10.1038/s41565-018-0245-5 (2018)..
Gongora, J. S. T. et al. Anapole nanolasers for mode-locking and ultrafast pulse generation.Nat. Commun.8, 15535 (2017)..
Bin-Alam, M. S. et al. Ultra-high-Qresonances in plasmonic metasurfaces.Nat. Commun.12, 974 (2021)..
Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase.Light Sci. Appl.8, 92 (2019)..
Rybin, M. V. et al. High-Qsupercavity modes in subwavelength dielectric resonators.Phys. Rev. Lett.119, 243901 (2017)..
Yang, Y. Q., Zenin, V. A.&Bozhevolnyi, S. I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures.ACS Photonics5, 1960–1966 (2018)..
Muhammad, N.&Khan, A. D. Tunable Fano resonances and electromagnetically induced transparency in all-dielectric holey block.Plasmonics10, 1687–1693 (2015)..
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures.Science354, aag2472 (2016)..
Verre, R. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators.Nat. Nanotechnol.14, 679–683 (2019)..
Muhammad, N. et al. Optical bound states in continuum in MoS2-based metasurface for directional light emission.Nano Lett.21, 967–972 (2021)..
Busschaert, S. et al. Transition metal dichalcogenide resonators for second harmonic signal enhancement.ACS Photonics7, 2482–2488 (2020)..
Azzam, S. I. et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems.Phys. Rev. Lett.121, 253901 (2018)..
Harats, M. G., Livneh, N.&Rapaport, R. Design, fabrication and characterization of a hybrid metal-dielectric nanoantenna with a single nanocrystal for directional single photon emission.Opt. Mater. Express7, 834–843 (2017)..
Shibanuma, T. et al. Efficient third harmonic generation from metal–dielectric hybrid nanoantennas.Nano Lett.17, 2647–2651 (2017)..
Sun, S. et al. Enhanced directional fluorescence emission of randomly oriented emitters via a metal–dielectric hybrid nanoantenna.J. Phys. Chem. C.123, 21150–21160 (2019)..
Miroshnichenko, A. E.&Kivshar, Y. S. Fano resonances in all-dielectric oligomers.Nano Lett.12, 6459–6463 (2012)..
Yang, Y. M. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation.Nano Lett.14, 1394–1399 (2014)..
Zhang, L. et al. Plug-and-play' plasmonic metafibers for ultrafast fibre lasers.Light. Adv. Manuf.3, 45 (2022)..
Zhu, Y. et al. Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions.Light. Adv. Manuf.4, 9 (2023)..
Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials.Nat. Mater.9, 707–715 (2010)..
Shorokhov, A. S. et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances.Nano Lett.16, 4857–4861 (2016)..
Rahmani, M., Luk'yanchuk, B.&Hong, M. H. Fano resonance in novel plasmonic nanostructures.Laser Photonics Rev.7, 329–349 (2013)..
Xu, L. et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators.Adv. Sci.6, 1802119 (2019)..
Zhen, B. et al. Topological nature of optical bound states in the continuum.Phys. Rev. Lett.113, 257401 (2014)..
Bogdanov, A. A. et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime.Adv. Photonics1, 016001 (2019)..
Hsu, C. W. et al. Bound states in the continuum.Nat. Rev. Mater.1, 16048 (2016)..
Liang, Y. et al. Bound states in the continuum in anisotropic plasmonic metasurfaces.Nano Lett.20, 6351–6356 (2020)..
Fang, C. Z. et al. High-Qresonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces.Opto Electron. Adv.4, 200030 (2021)..
Kang, M. et al. Coherent full polarization control based on bound states in the continuum.Nat. Commun.13, 4536 (2022)..
Lu, L. R. et al. Engineering a light–matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points.Photonics Res.8, A91–A100 (2020)..
Wang, Y. H. et al. Highly controllable etchless perovskite microlasers based on bound states in the continuum.ACS Nano15, 7386–7391 (2021)..
Chen, Y. et al. Integrated molar chiral sensing based on high-Qmetasurface.Nano Lett.20, 8696–8703 (2020)..
Sadrieva, Z. F. et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness.ACS Photonics4, 723–727 (2017)..
Wu, P. C. et al. Optical anapole metamaterial.ACS Nano12, 1920–1927 (2018)..
Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles.Nat. Commun.6, 8069 (2015)..
Wu, X. P. et al. Dynamicmodulation of electric and magnetic toroidal dipole resonance and light trapping in Si-GSST hybrid metasurfaces.Appl. Opt.62, 6850–6856 (2023)..
Cui, C. C. et al. Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface.Nanoscale11, 14446–14454 (2019)..
Zhang, T. Y. et al. Anapole mediated giant photothermal nonlinearity in nanostructured silicon.Nat. Commun.11, 3027 (2020)..
Grinblat, G. et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode.Nano Lett.16, 4635–4640 (2016)..
Luk'yanchuk, B. et al. Suppression of scattering for small dielectric particles: anapole mode and invisibility.Philos. Trans. AMath.Phys. Eng. Sci.375, 20160069 (2017)..
Koshelev, K. et al. Nonradiating photonics with resonant dielectric nanostructures.Nanophotonics8, 725–745 (2019)..
Baryshnikova, K. V. et al. Optical anapoles: concepts and applications.Adv. Optical Mater.7, 1801350 (2019)..
Koshelev, K., Bogdanov, A.&Kivshar, Y. Meta-optics and bound states in the continuum.Sci. Bull.64, 836–842 (2019)..
Yao, J. et al. Plasmonic anapole metamaterial for refractive index sensing.PhotoniX3, 23 (2022)..
Sun, S. Y. et al. Tunable plasmonic bound states in the continuum in the visible range.Phys. Rev. B103, 045416 (2021)..
Wang, J. et al. All-dielectric crescent metasurface sensor driven by bound states in the continuum.Adv. Funct. Mater.31, 2104652 (2021)..
Wang, W. H. et al. Brillouin zone folding driven bound states in the continuum.Nat. Commun.14, 2811 (2023)..
Overvig, A., Yu, N. F.&Alù, A. Chiral quasi-bound states in the continuum.Phys. Rev. Lett.126, 073001 (2021)..
Shi, T. et al. Displacement-mediated bound states in the continuum in all-dielectric superlattice metasurfaces.PhotoniX2, 7 (2021)..
Deng, Z. L. et al. Extreme diffraction control in metagratings leveraging bound states in the continuum and exceptional points.Laser Photonics Rev.16, 2100617 (2022)..
Yu, Z. J. et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum.Nat. Commun.11, 2602 (2020)..
Tripathi, A. et al. Lasing action from anapole metasurfaces.Nano Lett.21, 6563–6568 (2021)..
Weber, T. et al. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces.Nat. Mater.22, 970–976 (2023)..
Yu, T. X. et al. Anisotropically enhanced second harmonic generation in a WS2nanoparticle driven by optical resonances.ACS Appl. Nano Mater.7, 726–735 (2024)..
As'ham, K. et al. Mie exciton-polariton in a perovskite metasurface.Phys. Rev. Appl.18, 014079 (2022)..
Bernhardt, N. et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2monolayers.Nano Lett.20, 5309–5314 (2020)..
As'ham, K. et al. Boosting strong coupling in a hybrid WSe2monolayer–anapole–plasmon system.ACS Photonics8, 489–496 (2021)..
Chen, Y. et al. Observation of intrinsic chiral bound states in the continuum.Nature613, 474–478 (2023)..
Zhang, X.D. et al. Chiral emission from resonant metasurfaces.Science377, 1215–1218 (2022)..
Wu, J. J. et al. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum.Phys. Rev. Appl.16, 064018 (2021)..
Li, H. J. et al. Photonic spin-selective perfect absorptance on planar metasurfaces driven by chiral quasi-bound states in the continuum.Nanoscale15, 6636–6644 (2023)..
Shi, T. et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum.Nat. Commun.13, 4111 (2022)..
Huang, C. et al. Ultrafast control of vortex microlasers.Science367, 1018–1021 (2020)..
Zhong, H. C. et al. Ultra-low threshold continuous-wave quantum dot mini-BIC lasers.Light Sci. Appl.12, 100 (2023)..
Wu, M. F. et al. Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum.Nano Lett.20, 6005–6011 (2020)..
Feng, Z. W. et al. Dual-band polarized upconversion photoluminescence enhanced by resonant dielectric metasurfaces.eLight3, 21 (2023)..
Azzam, S. I. et al. Single and multi-mode directional lasing from arrays of dielectric nanoresonators.Laser Photonics Rev.15, 2000411 (2021)..
Carletti, L. et al. High-harmonic generation at the nanoscale boosted by bound states in the continuum.Phys. Rev. Res.1, 023016 (2019)..
Zograf, G. et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum.ACS Photonics9, 567–574 (2022)..
Dayal, G. et al. Independent tailoring of super-radiant and sub-radiant modes in high-Qplasmonic Fano resonant metasurfaces.Adv. Opt Mater.4, 1860–1866 (2016)..
Maier, S. A. Plasmonic field enhancement and SERS in the effective mode volume picture.Opt. Express14, 1957–1964 (2006)..
Berini, P.&De Leon, I. Surface plasmon–polariton amplifiers and lasers.Nat. Photonics6, 16–24 (2012)..
Meinzer, N., Barnes, W. L.&Hooper, I. R. Plasmonic meta-atoms and metasurfaces.Nat. Photonics8, 889–898 (2014)..
Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future.Opt. Express19, 22029–22106 (2011)..
Aigner, A. et al. Plasmonic bound states in the continuum to tailor light-matter coupling.Sci. Adv.8, eadd4816 (2022)..
Rose, A., Huang, D.&Smith, D. R. Controlling the second harmonic in a phase-matched negative-index metamaterial.Phys. Rev. Lett.107, 063902 (2011)..
Homola, J. Surface Plasmon resonance sensors for detection of chemical and biological species.Chem. Rev.108, 462–493 (2008)..
Shen, Y. et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit.Nat. Commun.4, 2381 (2013)..
Liu, N. et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing.Nano Lett.10, 1103–1107 (2010)..
Zhao, X. H. et al. Effects of three-layered nanodisk size on cell detection sensitivity of plasmon resonance biosensors.Biosens. Bioelectron.74, 799–807 (2015)..
Novotny, L.&van Hulst, N. Antennas for light.Nat. Photonics5, 83–90 (2011)..
Sherry, L. J. et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes.Nano Lett.5, 2034–2038 (2005)..
Verellen, N. et al. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing.Nano Lett.11, 391–397 (2011)..
Aouani, H. et al. Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies.J. Phys. Chem. C.117, 18620–18626 (2013)..
Ahmadivand, A. et al. Toroidal dipole-enhanced third harmonic generation of deep ultraviolet light using plasmonic meta-atoms.Nano Lett.19, 605–611 (2019)..
Kauranen, M.&Zayats, A. V. Nonlinear plasmonics.Nat. Photonics6, 737–748 (2012)..
Leuthold, J., Koos, C.&Freude, W. Nonlinear silicon photonics.Nat. Photonics4, 535–544 (2010)..
Muhammad, N.&Wang, G. P. Refractive index sensing and switching of leaky states in a metasurface.Opt. Lett.46, 5120–5123 (2021)..
Cotrufo, M. et al. Passive bias-free non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum.Nat. Photonics18, 81–90 (2024)..
Koshelev, K. et al. Asymmetric metasurfaces with high-Qresonances governed by bound states in the continuum.Phys. Rev. Lett.121, 193903 (2018)..
Lin, R. H., Alnakhli, Z.&Li, X. H. Engineering of multiple bound states in the continuum by latent representation of freeform structures.Photonics Res.9, B96–B103 (2021)..
Yang, Y. et al. Analytical perspective for bound states in the continuum in photonic crystal slabs.Phys. Rev. Lett.113, 037401 (2014)..
Kang, M. et al. Merging bound states in the continuum at off-high symmetry points.Phys. Rev. Lett.126, 117402 (2021)..
Carletti, L. et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum.Phys. Rev. Lett.121, 033903 (2018)..
Han, Z. H. et al. Significantly enhanced second-harmonic generations with all-dielectric antenna array working in the quasi-bound states in the continuum and excited by linearly polarized plane waves.Nanophotonics10, 1189–1196 (2021)..
He, Y. et al. Toroidal dipole bound states in the continuum.Phys. Rev. B98, 161112 (2018)..
Koshelev, K. etal. Nonlinear metasurfaces governed by bound states in the continuum.ACS Photonics6, 1639–1644 (2019)..
Xia, F. N. et al. Two-dimensional material nanophotonics.Nat. Photonics8, 899–907 (2014)..
Low, T. et al. Polaritons in layered two-dimensional materials.Nat. Mater.16, 182–194 (2017)..
Li, P. N. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials.Science359, 892–896 (2018)..
Magda, G. Z. et al. Exfoliation of large-area transition metal chalcogenide single layers.Sci. Rep.5, 14714 (2015)..
Yang, P. F. et al. Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons.Nat. Commun.13, 3238 (2022)..
Shi, J. et al. 3R MoS2with broken inversion symmetry: a promising ultrathin nonlinear optical device.Adv. Mater.29, 1701486 (2017)..
Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption.ACS Photonics6, 139–147 (2019)..
Koshelev, K. L. et al. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum.Phys. Rev. B98, 161113 (2018)..
Sychev, S. K. et al. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum.J. Phys. Conf. Ser.1124, 051056 (2018)..
Kravtsov, V. et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum.Light Sci. Appl.9, 56 (2020)..
Wang, T. C.&Zhang, S. H. Large enhancement of second harmonic generation from transition-metal dichalcogenide monolayer on grating near bound states in the continuum.Opt. Express26, 322–337 (2018)..
Maggiolini, E. et al. Strongly enhanced light–matter coupling of monolayer WS2from a bound state in the continuum.Nat. Mater.22, 964–969 (2023)..
Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide.Nat. Nanotechnol.13, 906–909 (2018)..
Sortino, L. et al. Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas.Nat. Commun.10, 5119 (2019)..
Kühner, L. et al. Radial bound states in the continuum for polarization-invariant nanophotonics.Nat. Commun.13, 4992 (2022)..
Pankin, P. S. et al. One-dimensional photonic bound states in the continuum.Commun. Phys.3, 91 (2020)..
Liu, W., Zhang, J. F.&Miroshnichenko, A. E. Toroidal dipole-induced transparency in core–shell nanoparticles.Laser Photonics Rev.9, 564–570 (2015)..
Berhe, A. M. et al. Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers.Opto Electron. Adv.7, 230181 (2024)..
von Neumann, J.&Wigner, E. P. Über merkwürdige diskrete Eigenwerte. InThe Collected Works of Eugene Paul Wigner(ed Wightman, A. S. ) 291–293 (Springer, Heidelberg, Berlin, 1993).
Capasso, F. et al. Observation of an electronic bound state above a potential well.Nature358, 565–567 (1992)..
Cong, L. Q.&Singh, R. Symmetry-protected dual bound states in the continuum in metamaterials.Adv. Opt. Mater.7, 1900383 (2019)..
Kim, S., Kim, K. H.&Cahoon, J. F. Optical bound states in the continuum with nanowire geometric superlattices.Phys. Rev. Lett.122, 187402 (2019)..
Plotnik, Y. et al. Experimental observation of optical bound states in the continuum.Phys. Rev. Lett.107, 183901 (2011)..
Molina, M. I., Miroshnichenko, A. E.&Kivshar, Y. S. Surface bound states in the continuum.Phys. Rev. Lett.108, 070401 (2012)..
Hsu, C. W. et al. Observation of trapped light within the radiation continuum.Nature499, 188–191 (2013)..
Gorkunov, M. V., Antonov, A. A.&Kivshar, Y. S. Metasurfaces with maximum chirality empowered by bound states in the continuum.Phys. Rev. Lett.125, 093903 (2020)..
Benalcazar, W. A.&Cerjan, A. Bound states in the continuum of higher-order topological insulators.Phys. Rev. B101, 161116 (2020)..
Lee, S. G., Kim, S. H.&Kee, C. S. Metasurfaces with bound states in the continuum enabled by eliminating first Fourier harmonic component in lattice parameters.Phys. Rev. Lett.126, 013601 (2021)..
Gomis-Bresco, J., Artigas, D.&Torner, L. Anisotropy-induced photonic bound states in the continuum.Nat. Photonics11, 232–236 (2017)..
Vertchenko, L. et al. Near-zero index photonic crystals with directive bound states in the continuum.Laser Photonics Rev.15, 2000559 (2021)..
Wang, W. H. et al. Plasmonic hot-electron photodetection with quasi-bound states in the continuum and guided resonances.Nanophotonics10, 1911–1921 (2021)..
Overvig, A. C. et al. Selection rules for quasibound states in the continuum.Phys. Rev. B102, 035434 (2020)..
Murai, S. et al. Engineering bound states in the continuum at telecom wavelengths with non-bravais lattices.Laser Photonics Rev.16, 2100661 (2022)..
Malek, S. C. et al. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces.Light Sci. Appl.11, 246 (2022)..
Malek, S. C. et al. Active nonlocal metasurfaces.Nanophotonics10, 655–665 (2020)..
Vaity, P. et al. Polarization-independent quasibound states in the continuum.Adv. Photonics Res.3, 2100144 (2022)..
Overvig, A. C. et al. Zone-folded quasi-bound state metasurfaces with customized, symmetry-protected energy-momentum relations.ACS Photonics10, 1832–1840 (2023)..
Kühne, J. et al. Fabrication robustness in BIC metasurfaces.Nanophotonics10, 4305–4312 (2021)..
Liu, Z. J. et al. High-Qquasibound states in the continuum for nonlinear metasurfaces.Phys. Rev. Lett.123, 253901 (2019)..
Wei, L. et al. Excitation of the radiationless anapole mode.Optica3, 799–802 (2016)..
Monticone, F. et al. Can a nonradiating mode be externally excited? nonscattering states versus embedded eigenstates.ACS Photonics6, 3108–3114 (2019)..
Xu, L. et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator.Light Sci. Appl.7, 44 (2018)..
Fedotov, V. A. et al. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials.Sci. Rep.3, 2967 (2013)..
Luk'yanchuk, B. et al. Hybrid anapole modes of high-index dielectric nanoparticles.Phys. Rev. A95, 063820 (2017)..
Smirnova, D.&Kivshar, Y. S. Multipolar nonlinear nanophotonics.Optica3, 1241–1255 (2016)..
Sain, B., Meier, C.&Zentgraf, T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review.Adv. Photonics1, 024002 (2019)..
Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics.Science367, 288–292 (2020)..
Nicholls, L. H. et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials.Nat. Photonics11, 628–633 (2017)..
MacDonald, K. F. et al. Ultrafast active plasmonics.Nat. Photonics3, 55–58 (2009)..
Wang, L. et al. Nonlinear wavefront control with all-dielectric metasurfaces.Nano Lett.18, 3978–3984 (2018)..
Segal, N. et al. Controlling light with metamaterial-based nonlinear photonic crystals.Nat. Photonics9, 180–184 (2015)..
Chen, P. Y.&Alù, A. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays.Nano Lett.11, 5514–5518 (2011)..
Liu, S. et al. An all-dielectric metasurface as a broadband optical frequency mixer.Nat. Commun.9, 2507 (2018)..
Palomba, S.&Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing.Phys. Rev. Lett.101, 056802 (2008)..
Renger, J. et al. Surface-enhanced nonlinear four-wave mixing.Phys. Rev. Lett.104, 046803 (2010)..
Deng, Z. L.&Li, G. X. Metasurface optical holography.Mater. Today Phys.3, 16–32 (2017)..
Ye, W. M. et al. Spin and wavelength multiplexed nonlinear metasurface holography.Nat. Commun.7, 11930 (2016)..
Krasavin, A. V. et al. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures.Nat. Commun.7, 11497 (2016)..
Aouani, H. et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna.Nat. Nanotechnol.9, 290–294 (2014)..
Grinblat, G. et al. Degenerate four-wave mixing in a multiresonant germanium nanodisk.ACS Photonics4, 2144–2149 (2017)..
Bar-David, J.&Levy, U. Nonlinear diffraction in asymmetric dielectric metasurfaces.Nano Lett.19, 1044–1051 (2019)..
Liu, S. et al. Resonantly enhanced second-harmonic generation using Ⅲ–Ⅴ semiconductor all-dielectric metasurfaces.Nano Lett.16, 5426–5432 (2016)..
Fedotova, A. et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate.Nano Lett.20, 8608–8614 (2020)..
Hu, Z. C. et al. Nonlinear control of photonic higher-order topological bound states in the continuum.Light Sci. Appl.10, 164 (2021)..
Ospanova, A. K., Stenishchev, I. V.&Basharin, A. A. Anapole mode sustaining silicon metamaterials in visible spectral range.Laser Photonics Rev.12, 1800005 (2018)..
Kim, K. H.&Rim, W. S. Anapole resonances facilitated by high-index contrast between substrate and dielectric nanodisk enhance vacuum ultraviolet generation.ACS Photonics5, 4769–4775 (2018)..
Muhammad, N.&Ouyang, Z. B. Plasmon-induced anti-transparency modes in metasurface.Appl. Nanosci.10, 15–22 (2020)..
Wang, Y. L. et al. Ultrasensitive terahertz sensing with high-Qtoroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface.Nanophotonics10, 1295–1307 (2021)..
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging.Science352, 1190–1194 (2016)..
Monticone, F., Valagiannopoulos, C. A.&Alù, A. Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging.Phys. Rev. X6, 041018 (2016)..
Shchelokova, A. V. et al. Locally enhanced image quality with tunable hybrid metasurfaces.Phys. Rev. Appl.9, 014020 (2018)..
Liu, W. Z. et al. Circularly polarized states spawning from bound states in the continuum.Phys. Rev. Lett.123, 116104 (2019)..
Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum.Nat. Photonics14, 623–628 (2020)..
Bahari, B. et al. Integrated and steerable vortex lasers using bound states in continuum.arXivhttps://doi.org/10.48550/arXiv.1707.00181https://doi.org/10.48550/arXiv.1707.00181(2017)..
Hwang, M. S. et al. Ultralow-threshold laser using super-bound states in the continuum.Nat. Commun.12, 4135 (2021)..
Jin, J. C. et al. Topologically enabled ultrahigh-Qguided resonances robust to out-of-plane scattering.Nature574, 501–504 (2019)..
Carletti, L. et al. Shaping the radiation pattern of second-harmonic generation from AlGaAs dielectric nanoantennas.ACS Photonics3, 1500–1507 (2016)..
Camacho-Morales, R. et al. Nonlinear generation of vector beams from AlGaAs nanoantennas.Nano Lett.16, 7191–7197 (2016)..
Liu, X. Y. et al. Tunable terahertz metamaterials based on anapole excitation with graphene for reconfigurable sensors.ACS Appl. Nano Mater.3, 2129–2133 (2020)..
Wu, J. Z. et al. Plasmonic refractive index sensing enhanced by anapole modes in metal-dielectric nanostructure array.J. Opt.23, 035002 (2021)..
Shi, L. P. et al. Progressive self-boosting anapole-enhanced deep-ultraviolet third harmonic during few-cycle laser radiation.ACS Photonics7, 1655–1661 (2020)..
Seok, T. J. et al. Radiation engineering of optical antennas for maximum field enhancement.Nano Lett.11, 2606–2610 (2011)..
Wang, Z. et al. Exciton-enabled meta-optics in two-dimensional transition metal dichalcogenides.Nano Lett.20, 7964–7972 (2020)..
Qin, F. et al. π-phase modulated monolayer supercritical lens.Nat. Commun.12, 32 (2021)..
Neshev, D. N.&Miroshnichenko, A. E. Enabling smart vision with metasurfaces.Nat. Photonics17, 26–35 (2023)..
Gu, T. et al. Reconfigurable metasurfaces towards commercial success.Nat. Photonics17, 48–58 (2023)..
Berestennikov, A. S. et al. Active meta-optics and nanophotonics with halide perovskites.Appl. Phys. Rev.6, 031307 (2019)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution