1.Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong 999077, China
2.Department of Refrigeration and Cryogenics Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
3.Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
Dangyuan Lei (dangylei@cityu.edu.hk)
Published:30 November 2024,
Published Online:18 September 2024,
Received:14 November 2023,
Revised:30 June 2024,
Accepted:31 July 2024
Scan QR Code
Jiang, C. C. et al. Phase-change VO2-based thermochromic smart windows. Light: Science & Applications, 13, 2489-2510 (2024).
Jiang, C. C. et al. Phase-change VO2-based thermochromic smart windows. Light: Science & Applications, 13, 2489-2510 (2024). DOI: 10.1038/s41377-024-01560-9.
Thermochromic coatings hold promise in reducing building energy consumption by dynamically regulating the heat gain of windows
which are often regarded as less energy-efficient components
across different seasons. Vanadium dioxide (VO
2
) stands out as a versatile thermochromic material for smart windows owing to its reversible metal-to-insulator transition (MIT) alongside correlated structural and optical properties. In this review
we delve into recent advancements in the phase-change VO
2
-based thermochromic coatings for smart windows
spanning from the macroscopic crystal level to the microscopic structural level (including elemental doping and micro/nano-engineering)
as well as advances in controllable fabrication. It is notable that hybridi
zing functional elements/materials (e.g.
W
Mo/SiO
2
TiN) with VO
2
in delicate structural designs (e.g.
core-shell
optical cavity) brings new degrees of freedom for controlling the thermochromic properties
including the MIT temperature
luminous transmittance
solar-energy modulation ability and building-relevant multi-functionality. Additionally
we provide an overview of alternative chromogenic materials that could potentially complement or surpass the intrinsic limitations of VO
2
. By examining the landscape of emerging materials
we aim to broaden the scope of possibilities for smart window technologies. We also offer insights into the current challenges and prospects of VO
2
-based thermochromic smart windows
presenting a roadmap for advancing this field towards enhanced energy efficiency and sustainable building design. In summary
this review innovatively categorizes doping strategies and corresponding effects of VO
2
underscores their crucial NIR-energy modulation ability for smart windows
pioneers a theoretical analysis of inverse core-shell structures
prioritizes practical engineering strategies for solar modulation in VO
2
films
and summarizes complementary chromogenic materials
thus ultimately advancing VO
2
-based smart window technologies with a fresh perspective.
Ramesh, T., Prakash, R.&Shukla, K. K. Life cycle energy analysis of buildings: an overview.Energy Build42, 1592–1600 (2010)..
Baetens, R., Jelle, B. P.&Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review.Sol. Energy Mater. Sol. Cells94, 87–105 (2010)..
Park, H. K.&Kim, H. Acoustic insulation performance of improved airtight windows.Constr. Build. Mater.93, 542–550 (2015)..
Tuchinda, C., Srivannaboon, S.&Lim, H. W. Photoprotection by window glass, automobile glass, and sunglasses.J. Am. Acad. Dermatol.54, 845–854 (2006)..
Edlich, R. et al. Use of UV-protective windows and window films to aid in the prevention of skin cancer.J. Long-Term Eff. Med. Implants14, 15 (2004)..
Chabane, I. J.&Bensalem, R. In The 23rd Conference on Passive and Low Energy Architecture. (Geneva, Switzerland, 2006).
Lin, J. et al. Thermochromic halide perovskite solar cells.Nat. Mater.17, 261–267 (2018)..
Heo, J., Huh, J.-W.&Yoon, T.-H. Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes.AIP Adv.5, 047118 (2015)..
Kwon, J. et al. In Emerging Liquid Crystal Technologies XV. (SPIE, 2020).
Lei, D. Y. et al. Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure.ACS Photonics2, 1306–1313 (2015)..
Liang, J., Hou, L.&Li, J. Frequency tunable perfect absorber in visible and near-infrared regimes based on VO 2 phase transition using planar layered thin films.JOSA B33, 1075–1080 (2016)..
Liang, J., Zhao, Y., Zhu, K., Guo, J.&Zhou, L. Synthesis and room temperature NO2 gas sensitivity of vanadium dioxide nanowire structures by chemical vapor deposition.Thin Solid Films669, 537–543 (2019)..
Yang, Z., Ko, C.&Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions.Annu. Rev. Mater. Res.41, 337–367 (2011)..
Goodenough, J. B. The two components of the crystallographic transition in VO2.J. Solid State Chem.3, 490–500 (1971)..
Yu, F.-y et al. A terahertz tunable metamaterial reflective polarization converter based on vanadium oxide film.Plasmonics17, 823–829 (2022)..
Yu, F.-y, Zhu, J.-b.&Shen, X.-b Tunable and reflective polarization converter based on single-layer vanadium dioxide-integrated metasurface in terahertz region.Opt. Mater.123, 111745 (2022)..
Liu, M. et al. Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings.Acs Nano11, 407–415 (2017)..
Cui, Y. et al. Thermochromic VO2 for energy-efficient smart windows.Joule2, 1707–1746 (2018)..
Son, S. B., Youn, J. W., Kim, K.-S.&Kim, D. U. Optical properties of periodic micropatterned VO2 thermochromic films prepared by thermal and intense pulsed light sintering.Mater. Des.182, 107970 (2019)..
Liang, J., Song, X., Li, J., Lan, K.&Li, P. A visible-near infrared wavelength-tunable metamaterial absorber based on the structure of Au triangle arrays embedded in VO2 thin film.J. Alloy. Compd.708, 999–1007 (2017)..
Wyszecki, G.&Stiles, W. S. Color Science. 982 (John Wiley&Sons, New York, 1982).
Jelle, B. P. Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings—Measurement and calculation.Sol. Energy Mater. Sol. Cells116, 291–323 (2013)..
Wyszecki, G.&Stiles, W. S. Color science: concepts and methods, quantitative data and formulae Vol. 40. (John Wiley&Sons, 2000)
ASTM, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. (ASTM G173-03,https://www.astm.org/g0173-03r20.htmlhttps://www.astm.org/g0173-03r20.html. Accessed 2020).
ISO 9050. Glass in building-determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors. (ISO, Geneva, Switzerland, 2003(E)).
ISO 10526. CIE standard illuminants for calorimetry. (ISO, Geneva, Switzerland, 1999(E).
Yuan, X., Zhang, W.&Zhang, P. Hole-lattice coupling and photoinduced insulator-metal transition in VO 2.Phys. Rev. B88, 035119 (2013)..
Yuan, X., Zhang, Y., Abtew, T. A., Zhang, P.&Zhang, W. VO 2: Orbital competition, magnetism, and phase stability.Phys. Rev. B86, 235103 (2012)..
Cui, Y., Shi, S., Chen, L., Luo, H.&Gao, Y. Hydrogen-doping induced reduction in the phase transition temperature of VO 2: a first-principles study.Phys. Chem. Chem. Phys.17, 20998–21004 (2015)..
Fan, L. et al. A facile strategy to realize rapid and heavily hydrogen-doped VO2 and study of hydrogen ion diffusion behavior.J. Phys. Chem. C.126, 5004–5013 (2022)..
Cui, Y., Wang, Y., Liu, B., Luo, H.&Gao, Y. First-principles study on the phase transition temperature of X-doped (X= Li, Na or K) VO 2.RSC Adv.6, 64394–64399 (2016)..
Chen, Y. et al. Electric-field control of Li-doping induced phase transition in VO2 film with crystal facet-dependence.Nano Energy51, 300–307 (2018)..
Top, I. et al. The effect of alkali metal (Na, K) doping on thermochromic properties of VO2 films.MRS Adv.3, 1863–1869 (2018)..
Zhou, Q. et al. Boron doped M-phase VO2 nanoparticles with low metal-insulator phase transition temperature for smart windows.Ceram. Int.46, 4786–4794 (2020)..
Hajlaoui, T. et al. Metal–insulator transition temperature of boron-doped VO2 thin films grown by reactive pulsed laser deposition.Scr. Materialia177, 32–37 (2020)..
Hu, L. et al. Porous W-doped VO2 films with simultaneously enhanced visible transparency and thermochromic properties.J. Sol.-Gel Sci. Technol.77, 85–93 (2016)..
Bleu, Y. et al. Towards Room Temperature Phase Transition of W-Doped VO2 Thin Films Deposited by Pulsed Laser Deposition: Thermochromic, Surface, and Structural Analysis.Materials16, 461 (2023)..
Mai, L., Hu, B., Hu, T., Chen, W.&Gu, E. Electrical property of Mo-doped VO2 nanowire array film by melting− quenching sol− gel method.J. Phys. Chem. B110, 19083–19086 (2006)..
Piccirillo, C., Binions, R.&Parkin, I. P. Nb-Doped VO2 Thin Films Prepared by Aerosol-Assisted Chemical Vapour Deposition.Eur. J. lnorg. Chem.25, 4050–4055 (2007)..
Cui, Y., Cao, C., Chen, Z., Luo, H.&Gao, Y. Atomic and electronic structures of thermochromic VO2 with Sb-doping.Computational Mater. Sci.130, 103–108 (2017)..
Zhang, J., He, H., Xie, Y.&Pan, B. Giant reduction of the phase transition temperature for beryllium doped VO 2.Phys. Chem. Chem. Phys.15, 4687–4690 (2013)..
Shao, Z. et al. Tri-band electrochromic smart window for energy savings in buildings.Nat. Sustain.7, 796–803 (2024)..
Appavoo, K. et al. Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy.Nano Lett.12, 780–786 (2012)..
Lazarovits, B., Kim, K., Haule, K.&Kotliar, G. Effects of strain on the electronic structure of VO 2.Phys. Rev. B81, 115117 (2010)..
Chen, Z., Cao, C., Chen, S., Luo, H.&Gao, Y. Crystallised mesoporous TiO 2 (A)–VO 2 (M/R) nanocomposite films with self-cleaning and excellent thermochromic properties.J. Mater. Chem. A2, 11874–11884 (2014)..
Du, J. et al. Formation and metal-to-insulator transition properties of VO2–ZrV2O7 composite films by polymer-assisted deposition.Sol. energy Mater. Sol. cells95, 1604–1609 (2011)..
Li, S.-Y., Niklasson, G. A.&Granqvist, C.-G. Nanothermochromics: Calculations for VO 2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation.J. Appl. Phys.108, 063525 (2010)..
Liang, J., Wang, S., Lei, D., Wang, Z.&Li, X. Enhanced visible and tunable infrared transmittance of W-doped VO2/SiO2/PVP composite films for smart windows.Optical Mater.121, 111485 (2021)..
Hao, Q. et al. VO2/TiN plasmonic thermochromic smart coatings for room‐temperature applications.Adv. Mater.30, 1705421 (2018)..
Cao, Z. et al. Tunable simultaneously visible-light and near-infrared transmittance for VO2/SiO2 composite films to enhance thermochromic properties.Mater. Lett.209, 609–612 (2017)..
He, Q. et al. PAM-PNIPAM/W-doped VO2 thermochromic hydrogel film with high solar modulation capability for smart windows deployment.Optical Mater.97, 109367 (2019)..
Liang, J. et al. Periodic Arrays of 3D AuNP‐Capped VO2 Shells and Their Temperature‐Tunable SERS Performance.Adv. Optical Mater.10, 2102615 (2022)..
Xie, Y. et al. Influence of shell materials on the optical performance of VO2 core–shell nanoparticle–based thermochromic films.Mater. Today Nano13, 100102 (2021)..
Pi, J. et al. Superhydrophobic and thermochromic VO2-Based composite coatings for energy-saving smart windows.Compos. Commun.32, 101167 (2022)..
Zhou, Y. et al. Surface plasmon resonance induced excellent solar control for VO 2@ SiO 2 nanorods-based thermochromic foils.Nanoscale5, 9208–9213 (2013)..
Lu, X. et al. A novel method to modify the color of VO 2-based thermochromic smart films by solution-processed VO 2@ SiO 2@ Au core–shell nanoparticles.RSC Adv.6, 47249–47257 (2016)..
Yao, L. et al. Three‐layered hollow nanospheres based coatings with ultrahigh‐performance of energy‐saving, antireflection, and self‐cleaning for smart windows.Small14, 1801661 (2018)..
Lee, M. et al. Photonic structures in radiative cooling.Light Sci. Appl.12, 134 (2023)..
Parker, J. Raman scattering from VO 2 single crystals: A study of the effects of surface oxidation.Phys. Rev. B42, 3164 (1990)..
Zhan, Y. et al. The growth mechanism of VO2 multilayer thin films with high thermochromic performance prepared by RTA in air.Surf. Interfaces9, 173–181 (2017)..
Liu, H. et al. SnO2/VO2/SnO2 tri-layer thermochromic films with high luminous transmittance, remarkable solar modulation ability and excellent hydrophobicity grown on glass substrates.Infrared Phys. Technol.113, 103648 (2021)..
Ji, Y., Mattsson, A., Niklasson, G. A., Granqvist, C. G.&Österlund, L. Synergistic TiO2/VO2 window coating with thermochromism, enhanced luminous transmittance, and photocatalytic activity.Joule3, 2457–2471 (2019)..
Zheng, J., Bao, S.&Jin, P. TiO2 (R)/VO2 (M)/TiO2 (A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions.Nano Energy11, 136–145 (2015)..
Liu, C. et al. Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing.J. Alloy. Compd.731, 1197–1207 (2018)..
Xu, F. et al. Highly enhanced thermochromic performance of VO2 film using "movable" antireflective coatings.ACS Appl. Mater. interfaces11, 4712–4718 (2019)..
Li, J. et al. Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics.Sci. Adv.9, eadg1837 (2023)..
An, Y., Fu, Y., Dai, J.-G., Yin, X.&Lei, D. Switchable radiative cooling technologies for smart thermal management.Cell Rep. Phys. Sci.3, 101098 (2022)..
Ma, X. et al. Fluorescence‐Enabled Colored Bilayer Subambient Radiative Cooling Coatings.Adv. Opt. Mater.11, 2303296 (2024)..
Fu, Y., An, Y., Xu, Y., Dai, J. G.&Lei, D. Polymer coating with gradient‐dispersed dielectric nanoparticles for enhanced daytime radiative cooling.EcoMat4, e12169 (2022)..
Wang, S. et al. Scalable thermochromic smart windows with passive radiative cooling regulation.Science374, 1501–1504 (2021)..
Tang, K. et al. Temperature-adaptive radiative coating for all-season household thermal regulation.Science374, 1504–1509 (2021)..
Lang, F., Wang, H., Zhang, S., Liu, J.&Yan, H. Review on variable emissivity materials and devices based on smart chromism.Int. J. Thermophys.39, 1–20 (2018)..
Xue, X. et al. Creating an eco‐friendly building coating with smart subambient radiative cooling.Adv. Mater.32, 1906751 (2020)..
Ma, X. et al. Effects of Stokes shift and Purcell enhancement on fluorescence-assisted radiative cooling.J. Mater. Chem. A10, 19635–19640 (2022)..
Yang, N., Fu, Y., Xue, X., Lei, D.&Dai, J. G. Geopolymer‐based sub‐ambient daytime radiative cooling coating.EcoMat5, e12284 (2023)..
Zhu, Y. et al. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure.Light Sci. Appl.11, 122 (2022)..
Liu, Y. et al. Intelligent regulation of VO2-PDMS-driven radiative cooling.Appl. Phys. Lett.120, 171704 (2022)..
Warwick, M. E.&Binions, R. Electric field assisted aerosol assisted chemical vapor deposition of nanostructured metal oxide thin films.Surf. Coat. Technol.230, 28–32 (2013)..
Ligmajer, F. et al. Epitaxial VO2 nanostructures: a route to large-scale, switchable dielectric metasurfaces.ACS photonics5, 2561–2567 (2018)..
Guo, B. et al. Low temperature fabrication of thermochromic VO 2 thin films by low-pressure chemical vapor deposition.RSC Adv.7, 10798–10805 (2017)..
Gaskell, J. M. et al. Optimised atmospheric pressure CVD of monoclinic VO2 thin films with picosecond phase transition.Surf. Coat. Technol.287, 160–165 (2016)..
Yin, H., Yu, K., Song, C., Wang, Z.&Zhu, Z. Low-temperature CVD synthesis of patterned core–shell VO 2@ ZnO nanotetrapods and enhanced temperature-dependent field-emission properties.Nanoscale6, 11820–11827 (2014)..
Vernardou, D., Louloudakis, D., Spanakis, E., Katsarakis, N.&Koudoumas, E. Thermochromic amorphous VO2 coatings grown by APCVD using a single-precursor.Sol. energy Mater. Sol. cells128, 36–40 (2014)..
Zhan, Y. et al. Enhanced thermal stability and thermochromic properties of VOx-based thin films by room-temperature magnetron sputtering.Sol. Energy Mater. Sol. Cells174, 102–111 (2018)..
Chang, T. et al. Flexible VO2 thermochromic films with narrow hysteresis loops.Sol. Energy Mater. Sol. Cells219, 110799 (2021)..
Manning, T. D., Parkin, I. P., Blackman, C.&Qureshi, U. APCVD of thermochromic vanadium dioxide thin films—solid solutions V 2− x M x O 2 (M=Mo, Nb) or composites VO 2: SnO 2.J. Mater. Chem.15, 4560–4566 (2005)..
Lu, Y. et al. Transparent optically vanadium dioxide thermochromic smart film fabricated via electrospinning technique.Appl. Surf. Sci.425, 233–240 (2017)..
He, X. et al. Electrospun quantum dots/polymer composite porous fibers for turn-on fluorescent detection of lactate dehydrogenase.J. Mater. Chem.22, 18471–18478 (2012)..
Tebyetekerwa, M., Xu, Z., Yang, S.&Ramakrishna, S. Electrospun nanofibers-based face masks, Advanced Fiber.Materials2, 161–166 (2020)..
Tang, K. et al. Self-reduced VO/VOx/carbon nanofiber composite as binder-free electrode for supercapacitors.Electrochim. Acta209, 709–718 (2016)..
Shi, N. N. et al. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization.Light Sci. Appl.7, 37 (2018)..
Li, S. et al. Functional fiber mats with tunable diffuse reflectance composed of electrospun VO2/PVP composite fibers.ACS Appl. Mater. Interfaces6, 9–13 (2014)..
Yilbas, B. S., Al-Sharafi, A.&Ali, H. In Self-Cleaning of Surfaces and Water Droplet Mobility. (eds Yilbas, B. S., Al-Sharafi, A., and Ali, H) 45-98 (Elsevier, 2019)
Narukawa Y.&Scriven, L. In12th International Coating Science and Technology Symposium(ISCST, Rochester, New York, USA, 2004).
Gao, Y. et al. Enhanced chemical stability of VO 2 nanoparticles by the formation of SiO 2/VO 2 core/shell structures and the application to transparent and flexible VO 2-based composite foils with excellent thermochromic properties for solar heat control.Energy Environ. Sci.5, 6104–6110 (2012)..
Truby, R. L.&Lewis, J. A. Printing soft matter in three dimensions.Nature540, 371–378 (2016)..
Castro, J. O., Ramesan, S., Rezk, A. R.&Yeo, L. Y. Continuous tuneable droplet ejection via pulsed surface acoustic wave jetting.Soft Matter14, 5721–5727 (2018)..
Ji, H., Liu, D., Cheng, H.&Tao, Y. Large area infrared thermochromic VO2 nanoparticle films prepared by inkjet printing technology.Sol. Energy Mater. Sol. Cells194, 235–243 (2019)..
Patil, R. A.,Devan, R. S., Liou, Y.&Ma, Y.-R. Efficient electrochromic smart windows of one-dimensional pure brookite TiO2 nanoneedles.Sol. Energy Mater. Sol. Cells147, 240–245 (2016)..
Kerszulis, J. A., Amb, C. M., Dyer, A. L.&Reynolds, J. R. Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers.Macromolecules47, 5462–5469 (2014)..
Bera, M. K., Mori, T., Yoshida, T., Ariga, K.&Higuchi, M. Construction of coordination nanosheets based on Tris (2, 2′-bipyridine)–Iron (Fe2+) complexes as potential electrochromic materials.ACS Appl. Mater. interfaces11, 11893–11903 (2019)..
Qian, J., Ma, D., Xu, Z., Li, D.&Wang, J. Electrochromic properties of hydrothermally grown Prussian blue film and device.Sol. Energy Mater. Sol. Cells177, 9–14 (2018)..
Rosseinsky, D.R., Monk, P.M.&Mortimer, R. J. Electrochromic materials and devices (John Wiley&Sons, 2015).
Sang, J. et al. Smart Windows with a VO2 Thin Film as a Conductive Layer for Efficient and Independent Dual-Band Modulation, ACS Appl. Electron.Mater3, 4882–4890 (2021)..
Benson, D. K. et al. In Advanced Sensors and Monitors for Process Industries and the Environment. (SPIE, 1999).
Korman, V. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, (SPIE, 2006).
Georg, A., Graf, W., Neumann, R.&Wittwer, V. Mechanism of the gasochromic coloration of porous WO3 films.Solid State Ion.127, 319–328 (2000)..
Georg, A., Graf, W., Neumann, R.&Wittwer, V. Stability of gasochromic WO3 films.Sol. Energy Mater. Sol. Cells63, 165–176 (2000)..
Calvino, C., Neumann, L., Weder, C.&Schrettl, S. Approaches to polymeric mechanochromic materials.J. Polym. Sci. Part A: Polym. Chem.55, 640–652 (2017)..
Jiang, B., Liu, L., Gao, Z.&Wang, W. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance.Adv. Optical Mater.6, 1800195 (2018)..
Shrestha, M., Asundi, A.&Lau, G.-K. Smart window based on electric unfolding of microwrinkled TiO2 nanometric films.Acs Photonics5, 3255–3262 (2018)..
Ke, Y. et al. Smart windows: electro‐, thermo‐, mechano‐, photochromics, and beyond, Advanced Energy.Materials9, 1902066 (2019)..
Ke, Y. et al. Cephalopod-inspired versatile design based on plasmonic VO2 nanoparticle for energy-efficient mechano-thermochromic windows.Nano Energy73, 104785 (2020)..
Harada, J., Taira, M.&Ogawa, K. Photochromism of Fulgide Crystals: From Lattice-Controlled Product Accumulation to Phase Separation.Cryst. Growth Des.17, 2682–2687 (2017)..
Irie, M., Fukaminato, T., Matsuda, K.&Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators.Chem. Rev.114, 12174–12277 (2014)..
Xia, H., Xie, K.&Zou, G. Advances in spiropyrans/spirooxazines and applications based on fluorescence resonance energy transfer (FRET) with fluorescent materials.Molecules22, 2236 (2017)..
Schrauben, J. N. et al. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents.Science336, 1298–1301 (2012)..
Sato, O. Optically switchable molecular solids: photoinduced spin-crossover, photochromism, and photoinduced magnetization.Acc. Chem. Res.36, 692–700 (2003)..
Pardo, R., Zayat, M.&Levy, D. Photochromic organic–inorganic hybrid materials.Chem. Soc. Rev.40, 672–687 (2011)..
Minkin, V. I. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds.Chem. Rev.104, 2751–2776 (2004)..
Zhao, X. et al. VO2-based composite films with exemplary thermochromic and photochromic performance.J. Appl. Phys.128, 185107 (2020)..
Fu, F.&Hu, L. In Advanced High Strength Natural Fibre Composites in Construction, (eds Fan, M., and Fu, F.) 405–423 (Woodhead Publishing, 2017)
Zhang, Y. et al. Perovskite thermochromic smart window: Advanced optical properties and low transition temperature.Appl. Energy254, 113690 (2019)..
Saito, M. A cross-cultural study on color preference in three asian cities comparison between Tokyo, Taipei and Tianjin.Jpn. Psychol. Res.36, 219–232 (1994)..
Mofarah, M. Y., Tahmtan, Z. S., Dadashi, M. T.&Banihashemian, S. H. How color affects marketing, Arab. J. Bus.Manag. Rev. (Oman Chap.)34, 1–9 (2013)..
Lu, C. et al. Nanoparticle-free and self-healing amphiphobic membrane for anti-surfactant-wetting membrane distillation.J. Environ. Sci.100, 298–305 (2021)..
Su, C. et al. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance.Environ. Sci. Technol.53, 11801–11809 (2019)..
Lin, K.-T. et al. Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling.eLight3, 22 (2023)..
Zhu, Y. et al. Night-time radiative warming using the atmosphere.Light Sci. Appl.12, 268 (2023)..
Qin, B., Zhu, Y., Zhou, Y., Qiu, M.&Li, Q. Whole-infrared-band camouflage with dual-band radiative heat dissipation.Light Sci. Appl.12, 246 (2023)..
Liao, Y., Fan, Y. L.&Lei, D. Y. Thermally tunable binary-phase VO2 metasurfaces for switchable holography and digital encryption.Nanophotonics13, 1109–1117 (2024)..
Pei, R. et al. The valence conversion mechanism for Mo‐doped VO2 films with enhanced thermochromic properties.Z. Anorg. Allg. Chem.648, e202200132 (2022)..
Wu, J. et al. Regulation of phase transition temperature and preparation for doping-VO2 smart thermal control films.J. Appl. Phys.131, 085101 (2022)..
Ersundu, A. E., Çelikbilek Ersundu, M., Doğan, E.&Güven, M. B. A comparative investigation on thermal, structural and optical properties of W and Nb-doped VO2-based thermochromic thin films.Thin Solid Films700, 137919 (2020)..
Zhao, C. et al. Nb-doped VO2 single crystal microtube arrays.Vacuum203, 111309 (2022)..
Dietrich, M. K., Kuhl, F., Polity, A.&Klar, P. J. Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications.Appl. Phys. Lett.110, 141907 (2017)..
Kuhl, F. et al. Embedding Quaternary V1–x–ySrxWyO2 into Multilayer Systems to Enhance ItsThermochromic Properties for Smart Glass Applications.ACS Appl. Electron. Mater.4, 513–520 (2022)..
Guo, H., Wang, Y., Jain, A., Fu, H.&Chen, F. Preparation of W/Zr co-doped VO2 with improved microstructural and thermochromic properties.J. Alloy. Compd.878, 160352 (2021)..
Haji, H. F. et al. Zr and W Co-doped VO2 thin films with improved luminous transmittance and transition temperature.J. Mater. Sci.: Mater. Electron.34, 2006 (2023)..
Lv, W., Huang, D., Chen, Y., Qiu, Q.&Luo, Z. Synthesis and characterization of Mo–W co-doped VO2 (R) nano-powders by the microwave-assisted hydrothermal method.Ceram. Int.40, 12661–12668 (2014)..
Jiazhen, Y., Yue, Z., Wanxia, H.&Mingjin, T. Effect of Mo-W Co-doping on semiconductor-metal phase transition temperature of vanadium dioxide film.Thin Solid Films516, 8554–8558 (2008)..
Zhao, Z. et al. Sn–W Co-doping Improves Thermochromic Performance of VO2 Films for Smart Windows.ACS Appl. Energy Mater.3, 9972–9979 (2020)..
Li, P. et al. Enhancing thermochromic properties of VO2 amorphous films on glass substrates by Sn-W co-doping.Infrared Phys. Technol.134, 104871 (2023)..
Gao, Y. et al. Phase and shape controlled VO 2 nanostructures by antimony doping.Energy Environ. Sci.5, 8708–8715 (2012)..
Cui, Y. et al. First-principles study of phase-transition temperature and optical properties of alkaline earth metal (Be, Mg, Ca, Sr or Ba)-doped VO2.Ceram. Int.44, 20814–20820 (2018)..
Zou, Z. et al. Thermochromic, threshold switching, and optical properties of Cr-doped VO2.thin films, J. Alloy. Compd.806, 310–315 (2019)..
Suleiman, A. O., Mansouri, S., Margot, J.&Chaker, M. Tuning VO2 phase stability by a combined effect of Cr doping and oxygen pressure.Appl. Surf. Sci.571, 151267 (2022)..
Gu, D., Zheng, H., Ma, Y., Xu, S.&Zhou, X. A highly-efficient approach for reducing phase transition temperature of VO2 polycrystalline thin films through Ru4+-doping.J. Alloy. Compd.790, 602–609 (2019)..
GGui, X.&Cava, R. J. Metal-insulator transition and anomalous lattice parameters changes in Ru-doped ${\mathrm{VO}}_{2}$.Phys. Rev. Mater.6, 075005 (2022)..
Qi, J., Ning, G.&Lin, Y. Synthesis, characterization, and thermodynamic parameters of vanadium dioxide.Mater. Res. Bull.43, 2300–2307 (2008)..
Ye, J. et al. Preparation, characterization and properties of thermochromic tungsten-doped vanadium dioxide by thermal reduction and annealing.J. Alloy. Compd.504, 503–507 (2010)..
Zhang, H. et al. A cost-effective method to fabricate VO2 (M) nanoparticles and films with excellent thermochromic properties.J. Alloy. Compd.636, 106–112 (2015)..
Jung, D., Kim, U.&Cho, W. Fabrication of pure monoclinic VO2 nanoporous nanorods via a mild pyrolysis process.Ceram. Int.44, 6973–6979 (2018)..
Billik, P. et al. Synthesis and transport properties of nanostructured VO2 by mechanochemical processing.Meas. Sci. Rev.11, 29 (2011)..
Wang, C. et al. One-step ball milling synthesis of VO2 (M) nanoparticles with exemplary thermochromic performance.SN Appl. Sci.3, 436 (2021)..
Rama, N.&Ramachandra Rao, M. S. Synthesis and study of electrical and magnetic properties of vanadium oxide micro and nanosized rods grown using pulsed laser deposition technique.Solid State Commun.150, 1041–1044 (2010)..
Florian Aguilar, C. A. Fabricación de películas delgadas de óxido de vandio por el método sputtering como material temocrómico, (2015).
Kim, M. H. et al. Growth of Metal Oxide Nanowires from Supercooled Liquid Nanodroplets.Nano Lett.9, 4138–4146 (2009)..
Devthade, V.&Lee, S. Synthesis of vanadium dioxide thin films and nanostructures.J. Appl. Phys.128, 231101 (2020)..
Li, Y., Jiang, P., Xiang, W., Ran, F.&Cao, W. A novel inorganic precipitation–peptization method for VO2 sol and VO2 nanoparticles preparation: Synthesis, characterization and mechanism.J. colloid interface Sci.462, 42–47 (2016)..
Chen, H.-K., Hung, H.-C., Yang, T. C. K.&Wang, S.-F. The preparation and characterization of transparent nano-sized thermochromic VO2–SiO2 films from the sol–gel process.J. Non-Crystalline Solids347, 138–143 (2004)..
Cao, C., Gao, Y.&Luo, H. Pure single-crystal rutile vanadium dioxide powders: Synthesis, mechanism and phase-transformation property, The.J. Phys. Chem. C.112, 18810–18814 (2008)..
Pham, V.-H. et al. Microstructure and luminescence of VO2 (B) nanoparticle synthesis by hydrothermal method.Green. Process. Synth.8, 802–807 (2019)..
Whittaker, L., Velazquez, J. M.&Banerjee, S. A VO-seeded approach for the growth of star-shaped VO 2 and V 2 O 5 nanocrystals: facile synthesis, structural characterization, and elucidation of electronic structure.CrystEngComm13, 5328–5336 (2011)..
Zhong, L. et al. TiO 2 seed-assisted growth of VO 2 (M) films and thermochromic performance.CrystEngComm.18, 7140–7146 (2016)..
Wu, H. et al. Direct synthesis of vanadium oxide nanopowders by the combustion approach.Chem. Phys. Lett.706, 7–13 (2018)..
Cao, Z. et al. A simple and low-cost combustion method to prepare monoclinic VO2 with superior thermochromic properties.Sci. Rep.6, 39154 (2016)..
Cao, X., Jin, P.&Luo, H. In Nanotechnology in Eco-Efficient Construction. 503–524 (Elsevier, 2019)
Whittaker, L., Patridge, C. J.&Banerjee, S. Microscopic and nanoscale perspective of the metal− insulator phase transitions of VO2: some new twists to an old tale.J. Phys. Chem. Lett.2, 745–758 (2011)..
He, X. et al. Orbital change manipulation metal–insulator transition temperature in W-doped VO 2.Phys. Chem. Chem. Phys.17, 11638–11646 (2015)..
Ji, H., Liu, D., Zhang, C.&Cheng, H. VO2/ZnS core-shell nanoparticle for the adaptive infrared camouflage application with modified color and enhanced oxidation resistance.Sol. Energy Mater. Sol. Cells176, 1–8 (2018)..
Kim, Y. et al. High-throughput roll-to-roll fabrication of flexible thermochromic coatings for smart windows with vo 2 nanoparticles.J. Mater. Chem. C.6, 3451–3458 (2018)..
Chen, Y. et al. High performance and enhanced durability of thermochromicfilms using VO2@ ZnO core–shell nanoparticles.ACS Appl. Mater. interfaces9, 27784–27791 (2017)..
Zhang, Q., Sando, D.&Nagarajan, V. Chemical route derived bismuth ferrite thin films and nanomaterials.J. Mater. Chem. C.4, 4092–4124 (2016)..
Pujahari, R. In Energy Materials. 27–60 (Elsevier, 2021)
SpinCoater, WHAT IS SPIN COATING?https://www.spincoater.com/what-is-spin-coating.phphttps://www.spincoater.com/what-is-spin-coating.php. Accessed 2019).
Siemann, U. In Scattering methods and the properties of polymer materials. 1–14 (Springer, 2005)
Jabari, E. et al. 2D printing of graphene: a review.2D Mater.6, 042004 (2019)..
Sheng, M., Wang, W., Li, L., Zhang, L.&Fu, S. All-in-one wearable electronics design: Smart electrochromic liquid-crystal-clad fibers without external electrodes.Colloids Surf. A: Physicochemical Eng. Asp.630, 127535 (2021)..
Gao, C. et al. A review on WO3 gasochromic film: Mechanism, preparation and properties.Int. J. Hydrogen Energy48, 2442–2465 (2022)..
Imato, K. et al. Mechanochromic dynamic covalent elastomers: quantitative stress evaluation and autonomous recovery.ACS Macro Lett.4, 1307–1311 (2015)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution