1.Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
2.Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China
Meng Xun (xunmeng@ime.ac.cn)
Yibo Dong (dyb@usst.edu.cn)
Published:31 October 2024,
Published Online:03 September 2024,
Received:04 January 2024,
Revised:03 July 2024,
Accepted:31 July 2024
Scan QR Code
Pan, G. Z., Xun, M. & Zhou, X. L. et al. Harnessing the capabilities of VCSELs: unlocking the potential for advanced integrated photonic devices and systems. Light: Science & Applications, 13, 2075-2100 (2024).
Pan, G. Z., Xun, M. & Zhou, X. L. et al. Harnessing the capabilities of VCSELs: unlocking the potential for advanced integrated photonic devices and systems. Light: Science & Applications, 13, 2075-2100 (2024). DOI: 10.1038/s41377-024-01561-8.
Vertical cavity surface emitting lasers (VCSELs) have emerged as a versatile and promising platform for developing advanced integrated photonic devices and systems due to their low power consumption
high modulation bandwidth
small footprint
excellent scalability
and compatibility with monolithic integration. By combining these unique capabilities of VCSELs with the functionalities offered by micro/nano optical structures (e.g. metasurfaces)
it enables various versatile energy-efficient integrated photonic devices and systems with compact size
enhanced performance
and improved reliability and functionality. This review provides a comprehensive overview of the state-of-the-art versatile integrated photonic devices/systems based on VCSELs
including photonic neural networks
vortex beam emitters
holographic devices
beam deflectors
atomic sensors
and biosensors. By leveraging the capabilities of VCSELs
these integrated photonic devices/systems open up new opportunities in various fields
including artificial intelligence
large-capacity optical communication
imaging
biosensing
and so on. Through this comprehensive review
we aim to provide a detailed understanding of the pivotal role played by VCSELs in integrated photonics and highlight their significance in advancing the field towards efficient
compact
and versatile photonic solutions.
Kim, D. U. et al. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption.Nat. Photon.17, 1089–1096 (2023)..
He, T. et al. On-chip optoelectronic logic gates operating in the telecom band.Nat. Photon.18, 60–67 (2024)..
Chen, Y. T. et al. All-analog photoelectronic chip for high-speed vision tasks.Nature623, 48–57 (2023)..
Xiao, Z. A. et al. Recent progress in silicon-based photonic integrated circuits and emerging applications.Adv. Opt. Mater.11, 2301028 (2023)..
Aalto, T. et al. Optical interconnects based on VCSELs and low-loss silicon photonics.Proceedings of the SPIE 10538, Optical Interconnects XVIII. p. 1053816 (SPIE, 2018).
Jahed, M. et al. Angled flip-chip integration of VCSELs on silicon photonic integrated circuits.J. Lightwave Technol.40, 5190–5200 (2022)..
Shen, P. K. et al. On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides. OFC 2014. p. 1-3 (IEEE, 2014).
Padullaparthi, B. D., Tatum, J.&Iga, K.VCSEL Industry: Communication and Sensing.(Wiley, Hoboken, 2021).
Liu, A. J. et al. Vertical-cavity surface-emitting lasers for data communication and sensing.Photon. Res.7, 121–136 (2019)..
Bardinal, V. et al. Spotted custom lenses to tailor the divergence of vertical-cavity surface-emitting lasers.IEEE Photon. Technol. Lett.22, 1592–1594 (2010)..
Bardinal, V. et al. Collective micro-optics technologies for VCSEL photonic integration.Adv. Opt. Technol.2011, 609643 (2011)..
Jeong, H. et al. Skewed microlens on addressable VCSEL arrays for energy-efficient LiDAR scanning.2020 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). p. 1-2 (IEEE, 2020).
Huang, Y. W. et al. Monolithic microlens VCSELs with high beam quality.IEEE Photon. J.9, 1504408 (2017)..
Huang, Y. W. et al. High single-fundamental-mode power VCSEL integrated with alternating aluminum content micro-lens.Appl. Opt.57, 7055–7059 (2018)..
Reig, B. et al. Study of SU-8 reliability in wet thermal ambient for application to polymer micro-optics on VCSELs.Jpn J. Appl. Phys.53, 08MC03 (2014)..
Hergenhan, G.,Lücke, B.&Brauch, U. Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements: concept and experimental verification.Appl. Opt.42, 1667–1680 (2003)..
Gracias, A., Tokranova, N.&Castracane, J. SU8-based static diffractive optical elements: Wafer-level integration with VCSEL arrays.Proceedings of the SPIE 6899, Photonics Packaging, Integration, and Interconnects VIII. p. 68990J (SPIE, 2008).
Cheng, H. T. et al. Zone-addressable 20 × 20 940 nm VCSEL array with a 5-bit binary number pattern.Opt. Lett.48, 3937–3940 (2023)..
Fischer, J.&Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit.Laser Photon. Rev.7, 22–44 (2013)..
Wang, H. et al. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications.Adv. Funct. Mater.33, 2214211 (2023)..
Hong, Z. H. et al. Three-dimensional printing of glass micro-optics.Optica8, 904–910 (2021)..
Harinarayana, V.&Shin, Y. C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review.Opt. Laser Technol.142, 107180 (2021)..
O'Halloran, S. et al. Two-photon polymerization: fundamentals, materials, and chemical modification strategies.Adv. Sci.10, 2204072 (2023)..
Zyla, G.&Farsari, M. Frontiers of laser-based 3d printing: a perspective on multi-photon lithography.Laser Photon. Rev.18, 2301312 (2024)..
Tan, J. W. et al. Femtosecond laser fabrication of refractive/diffractive micro‐optical components on hard brittle materials.Laser Photon. Rev.17, 2200692 (2023)..
Tan, D. Z. et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices.Adv. Photon.3, 024002 (2021)..
Koyama, F. Advances and new functions of VCSEL photonics.Opt. Rev.21, 893–904 (2014)..
Koyama, F. Recent advances in VCSEL photonics.16th Opto-Electronics and Communications Conference. p. 473-476 (IEEE, 2011).
Arai, M. et al. Growth of highly strained GaInAs-GaAs quantum wells on patterned substrate and its application for multiple-wavelength vertical-cavity surface-emitting laser array.IEEE J. Sel. Top. Quant. Electron.8, 811–816 (2002)..
Dayal, P. B. et al. Multiple-wavelength GaInAs/GaAs VCSELs with grading a spacer layer for short reach WDM applications.2009 IEEE International Conference on Indium Phosphide & Related Materials. p. 182-184(IEEE, 2009).
Pissis, A. et al. Multiple wavelength VCSEL array with intra-cavity grating.2021 27th International Semiconductor Laser Conference (ISLC). p. 1-2 (IEEE, 2021).
Zhou, Y. X., Cheng, J.&Allerman, A. A. High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strained InGaAs quantum wells.IEEE Photon. Technol. Lett.12, 122–124 (2000)..
Torres-Ferrera, P. et al. Statistical analysis of 100 Gbps per wavelength SWDM VCSEL-MMF data center links on a large set of OM3 and OM4 fibers.J. Lightwave Technol.40, 1018–1026 (2022)..
Suemune, I. Theoretical study of differential gain in strained quantum well structures.IEEE J. Quant. Electron.27, 1149–1159 (1991)..
Westbergh, P. et al. High-speed, low-current-density 850 nm VCSELs.IEEE J. Sel. Top. Quant. Electron.15, 694–703 (2009)..
Healy, S. B. et al. Active region design for high-speed 850-nm VCSELs.IEEE J. Quant. Electron.46, 506–512 (2010)..
Westbergh, P. et al. Impact of photon lifetime on high-speed VCSEL performance.IEEE J. Sel. Top. Quant. Electron.17, 1603–1613 (2011)..
Larisch, G. et al. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs.IEEE Photon. Technol. Lett.28, 2327–2330 (2016)..
Chang, Y. C.&Coldren, L. A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers.IEEE J. Sel. Top. Quant. Electron.15, 704–715 (2009)..
Al-Omari, A. N.&Lear, K. L. Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth.IEEE Photon. Technol. Lett.16, 969–971 (2004)..
Pan, G. Z. et al. Extrinsic parasitics and design considerations on modulation bandwidth of 850-nm vertical cavity surface emitting lasers.IEEE Trans. Electron Devices69, 4992–4997 (2022)..
Zheng, Y., Lin, C. H.&Coldren, L. A. Control of polarization phase offset in low threshold polarization switching VCSELs.IEEE Photon. Technol. Lett.23, 305–307 (2011)..
Xie, Y. Y. et al. Low threshold current single-fundamental-mode photonic crystal VCSELs.IEEE Photon. Technol. Lett.24, 464–466 (2012)..
Qiu, P. P. et al. Fabrication and characterization of low-threshold single fundamental mode VCSELs with dielectric DBR mirror.IEEE Photon. J.13, 1500106 (2021)..
Seurin, J. F. et al. Progress in high-power high-efficiency VCSEL arrays.Proceedings of the SPIE 7229, Vertical-Cavity Surface-Emitting Lasers XIII. p. 722903 (SPIE, 2009).
Zhou, D. L. et al. Progress on vertical-cavity surface-emitting laser arrays for infrared illumination applications.Proceedings of the SPIE 9001, Vertical-Cavity Surface-Emitting Lasers XVIII. p. 90010E (SPIE, 2014).
Moser, P. et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s.Electron. Lett.48, 1292–1294 (2012)..
Haglund, E. et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25-50 Gbit/s.Electron. Lett.51, 1096–1098 (2015)..
Moon, S. et al. High-performance thin-film VCSELs integrated with a copper-plated heatsink.Adv. Mater. Interfaces10, 2300191 (2023)..
Xun, M. et al. 190 ℃ high-temperature operation of 905-nm VCSELs with high performance.IEEE Trans. Electron Dev.68, 2829–2834 (2021)..
Xun, M. et al. Analysis of thermal properties of 940-nm vertical cavity surface emitting laser arrays.IEEE Trans. Electron Dev.68, 158–163 (2021)..
Soda, H. et al. GaInAsP/InP surface emitting injection lasers.Jpn J. Appl. Phys.18, 2329–2330 (1979)..
Ogura, M. et al. GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode.Jpn J. Appl. Phys.22, L112–L114 (1983)..
Gourley, P. L.&Drummond, T. J. Visible, room-temperature, surface-emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells.Appl. Phys. Lett.50, 1225–1227 (1987)..
Jewell, J. L. et al. Low-threshold electrically pumped vertical-cavity surface-emitting microlasers.Electron. Lett.25, 1123–1124 (1989)..
Geels, R. S. et al. Low threshold planarized vertical-cavity surface-emitting lasers.IEEE Photon. Technol. Lett.2, 234–236 (1990)..
Huffaker, D. L. et al. Native-oxide defined ring contact for low threshold vertical-cavity lasers.Appl. Phys. Lett.65, 97–99 (1994)..
Heidari, E. et al. Hexagonal transverse-coupled-cavity VCSEL redefining the high-speed lasers.Nanophotonics9, 4743–4748 (2020)..
Heidari, E. et al. VCSEL with multi-transverse cavities with bandwidth beyond 100 GHz.Nanophotonics10, 3779–3788 (2021)..
Kotaki, Y., Uchiyama, S.&Iga, K. GaInAsP/InP surface emitting laser with two active layers.1984 International Conference on Solid State Devices and Materials.p. 133-136 (1984).
Schmid, W. et al. CW operation of a diode cascade InGaAs quantum well VCSEL.Electron. Lett.34, 553–555 (1998)..
Knodl, T. et al. Scaling behavior of bipolar cascade VCSELs.IEEE Photon. Technol. Lett.13, 930–932 (2001)..
Knodl, T. et al. Multistage bipolar cascade vertical-cavity surface-emitting lasers: theory and experiment.IEEE J. Sel. Top. Quant. Electron.9, 1406–1414 (2003)..
Dummer, M. et al. The role of VCSELs in 3D sensing and LiDAR.Proceedings of the SPIE 11692, Optical Interconnects XXI. p. 116920C (SPIE, 2021).
Pan, G. Z. et al. High slope efficiency bipolar cascade 905nm vertical cavity surface emitting laser.IEEE Electron Dev. Lett.42, 1342–1345 (2021)..
Li, Y. et al. High-gain InAlGaAs quaternary quantum wells for high-power 760 nm two-junction VCSELs.IEEE J. Quant. Electron.59, 2400508 (2023)..
Meng, F. S. et al. High slope efficiency double and triple junction 808 nm vertical cavity surface emitting lasers.IEEE Photon. Technol. Lett.35, 533–536 (2023)..
Ghods, A. et al. Design and fabrication of single-mode multi-junction 905 nm VCSEL with integrated anti-phase mode filter.J. Lightwave Technol.41, 3102–3107 (2023)..
Zhao, F. Y. et al. High-power, multi-junction, 905 nm vertical-cavity surface-emitting laser with an AlGaAsSb electron-blocking layer.Opt. Lett.48, 2142–2145 (2023)..
Xiao, Y. et al. Multi-junction cascaded vertical-cavity surface-emitting laser with a high power conversion efficiency of 74%.Light Sci. Appl.13, 60 (2024)..
Zhang, C., Li, H. J.&Liang, D. Antireflective vertical-cavity surface-emitting laser for LiDAR.Nat. Commun.15, 1105 (2024)..
Huang, C. Y. et al. CsPbBr3perovskite quantum dot vertical cavity lasers with low threshold and high stability.ACS Photon.4, 2281–2289 (2017)..
Chen, S. T. et al. High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers.Adv. Mater.29, 1604781 (2017)..
Wang, Y. et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals.Adv. Funct. Mater.27, 1605088 (2017)..
Heuser, T. et al. Development of highly homogenous quantum dot micropillar arrays for optical reservoir computing.IEEE J. Sel. Top. Quant. Electron.26, 1900109 (2020)..
Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array.Science373, 1514–1517 (2021)..
Choi, J. H. et al. Room temperature electrically pumped topological insulator lasers.Nat. Commun.12, 3434 (2021)..
Yang, T. et al. Green vertical-cavity surface-emitting lasers based on InGaN quantum dots and short cavity.Nano-Micro Lett.15, 223 (2023)..
Zheng, Z. M. et al. Current spreading structure of GaN-based vertical-cavity surface-emitting lasers.Opt. Lett.48, 5141–5144 (2023)..
Mei, Y. et al. Low-threshold wavelength-tunable ultraviolet vertical-cavity surface-emitting lasers from 376 to 409 nm.Fundam. Res.1, 684–690 (2021)..
Huang, C. Y. et al. Challenges and advancement of blue Ⅲ-nitride vertical-cavity surface-emitting lasers.Micromachines12, 676 (2021)..
Hjort, F. et al. A 310 nm optically pumped AlGaN vertical-cavity surface-emitting laser.ACS Photon.8, 135–141 (2021)..
Zheng, Z. M. et al. High-quality AlGaN epitaxial structures and realization of UVC vertical-cavity surface-emitting lasers.Sci. China Mater.66, 1978–1988 (2023)..
Gębski, M. et al. Baseline 1300 nm dilute nitride VCSELs.OSA Contin.3, 1952–1957 (2020)..
Spiga, S. et al. Single-mode high-speed 1.5-µm VCSELs.J. Lightwave Technol.35, 727–733 (2017)..
Caliman, A. et al. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band.Opt. Express19, 16996–17001 (2011)..
Li, B. J. et al. Photonic engineering of InP towards homoepitaxial short-wavelength infrared VCSELs.Optica11, 113–119 (2024)..
Shen, Y. J. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities.Light Sci. Appl.8, 90 (2019)..
Allen, L. et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.Phys. Rev. A45, 8185–8189 (1992)..
Yao, A. M.&Padgett, M. J. Orbital angular momentum: origins, behavior and applications.Adv. Opt. Photon.3, 161–204 (2011)..
Willner, A. E. et al. Orbital angular momentum of light for communications.Appl. Phys. Rev.8, 041312 (2021)..
Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers.Science340, 1545–1548 (2013)..
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing.Nat. Photon.6, 488–496 (2012)..
Mair, A. et al. Entanglement of the orbital angular momentum states of photons.Nature412, 313–316 (2001)..
Fickler, R. et al. Quantum entanglement of high angular momenta.Science338, 640–643 (2012)..
Huang, C. et al. Ultrafast control of vortex microlasers.Science367, 1018–1021 (2020)..
Padgett, M.&Bowman, R. Tweezers with a twist.Nat. Photon.5, 343–348 (2011)..
Dholakia, K.&Čižmár, T. Shaping the future of manipulation.Nat. Photon.5, 335–342 (2011)..
Fang, X. Y., Ren, H. R.&Gu, M. Orbital angular momentum holography for high-security encryption.Nat. Photon.14, 102–108 (2020)..
Ren, H. R. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space.Nat. Nanotechnol.15, 948–955 (2020)..
Fang, X. Y. et al. High-dimensional orbital angular momentum multiplexing nonlinear holography.Adv. Photon.3, 015001 (2021)..
Fang, X. Y. et al. Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal.Phys. Rev. A102, 043506 (2020)..
Meng, W. J. et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution.Opto-Electron. Sci.1, 220004 (2022)..
Ye, Y. H. et al. Experimental realization of optical storage of vector beams of light in warm atomic vapor.Opt. Lett.44, 1528–1531 (2019)..
Ren, H. R. et al. On-chip noninterference angular momentum multiplexing of broadband light.Science352, 805–809 (2016)..
Wang, H. T. et al. Coloured vortex beams with incoherent white light illumination.Nat. Nanotechnol.18, 264–272 (2023)..
Zhang, J. et al. An InP-based vortex beam emitter with monolithically integrated laser.Nat. Commun.9, 2652 (2018)..
Li, H. L. et al. Orbital angular momentum vertical-cavity surface-emitting lasers.Optica2, 547–552 (2015)..
Pan, G. Z. et al. High-compactness Bessel beam emitters based on vertical-cavity surface-emitting lasers.IEEE Trans. Electron Dev.69, 2508–2513 (2022)..
Lin, D. M. et al. Dielectric gradient metasurface optical elements.Science345, 298–302 (2014)..
Genevet, P. et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces.Optica4, 139–152 (2017)..
Arbabi, A. et al. Planar metasurface retroreflector.Nat. Photon.11, 415–420 (2017)..
Ouyang, X. et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing.Nat. Photon.15, 901–907 (2021)..
Fu, P. et al. Metasurface enabled on-chip generation and manipulation of vector beams from vertical cavity surface-emitting lasers.Adv. Mater.35, 2204286 (2023)..
Dong, Y. B. et al. Nanoprinted diffractive layer integrated vertical-cavity surface-emitting vortex lasers with scalable topological charge.Nano Lett.23, 9096–9104 (2023)..
Márquez, A. et al. Information multiplexing from optical holography to multi-channel metaholography.Nanophotonics12, 4415–4440 (2023)..
Wang, Y. Z., Pang, C.&Qi, J. R. 3D reconfigurable vectorial holography via a dual-layer hybrid metasurface device.Laser Photon. Rev.18, 2300832 (2024)..
Yang, H. et al. Noninterleaved metasurface for full-polarization three-dimensional vectorial holography.Laser Photon. Rev.16, 2200351 (2022)..
Sui, X. M. et al. Polarimetric calibrated robust dual-SLM complex-amplitude computer-generated holography.Opt. Lett.48, 3625–3628 (2023)..
Kim, G. et al. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays.Nanoscale14, 4380–4410 (2022)..
Zhao, R. Z., Huang, L. L.&Wang, Y. T. Recent advances in multi-dimensional metasurfaces holographic technologies.PhotoniX1, 20 (2020)..
Wang, Q. H. et al. On-chip generation of structured light based on metasurface optoelectronic integration.Laser Photon. Rev.15, 2000385 (2021)..
Hsu, W. C. et al. Compact structured light generation based on meta-hologram PCSEL integration.Discov. Nano18, 87 (2023)..
Ni, P. N. et al. Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces.Nat. Commun.13, 7795 (2022)..
Hutchison, D. N. et al. High-resolution aliasing-free optical beam steering.Optica3, 887–890 (2016)..
Wu, T. W. et al. Topological photonic lattice for uniform beam splitting, robust routing, and sensitive far-field steering.Nano Lett.23, 3866–3871 (2023)..
Meng, C. et al. Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering.ACS Photon.7, 1849–1856 (2020)..
Heck, M. J. R. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering.Nanophotonics6, 93–107 (2017)..
Li, J. W. et al. Cascaded domain engineering optical phased array for 2D beam steering.Nanophotonics12, 4017–4030 (2023)..
Li, J. W. et al. Cascaded domain engineering optical phased array for beam steering.Appl. Phys. Rev.10, 031413 (2023)..
Löfving, B.&Hård, S. Beam steering with two ferroelectric liquid-crystal spatial light modulators.Opt. Lett.23, 1541–1543 (1998)..
Sun, Z. B. et al. Reconfigurable geometrical phase spatial light modulator using short-pitch ferroelectric liquid crystals.Adv. Opt. Mater.11, 2300561 (2023)..
Johnson, M. T. et al. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays.Appl. Phys. Lett.103, 201115 (2013)..
Johnson, M. T. et al. High-speed beam steering with phased vertical cavity laser arrays.IEEE J. Sel. Top. Quant. Electron.19, 1701006 (2013)..
Pan, G. Z. et al. Ultra-compact electrically controlled beam steering chip based on coherently coupled VCSEL array directly integrated with optical phased array.Opt. Express27, 13910–13922 (2019)..
Zhao, Z. Z. et al. Dynamic phase manipulation of vertical-cavity surface-emitting lasers via on-chip integration of microfluidic channels.Opt. Express29, 1481–1491 (2021)..
Hu, S. T. et al. Non-mechanical beam scanner based on VCSEL integrated amplifier with resonant wavelength detuning design.Chin. Opt. Lett.19, 121403 (2021)..
Gu, X. et al. Miniature nonmechanical beam deflector based on bragg reflector waveguide with a number of resolution points larger than 1000.IEEE Photon. J.4, 1712–1719 (2012)..
Gu, X. D. et al. Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier.Appl. Phys. Lett.99, 211107 (2011)..
Gu, X. D., Shimada, T.&Koyama, F. Giant and high-resolution beam steering using slow-light waveguide amplifier.Opt. Express19, 22675–22683 (2011)..
Koyama, F.&Gu, X. D. Beam steering, beam shaping, and intensity modulation based on VCSEL photonics.IEEE J. Sel. Top. Quant. Electron.19, 1701510 (2013)..
Juodėnas, M. et al. High-angle deflection of metagrating-integrated laser emission for high-contrast microscopy.Light Sci. Appl.12, 251 (2023)..
Thrush, E. et al. Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing.IEEE J. Quant. Electron.40, 491–498 (2004)..
Nakazato, K. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit.Philos Trans. R. Soc. A Math. Phys. Eng. Sci.372, 20130109 (2014)..
Mateus, C. F. R. et al. Compact label-free biosensor using VCSEL-based measurement system.IEEE Photon. Technol. Lett.16, 1712–1714 (2004)..
Mahzabeen, F. et al. Real-time point-of-care total protein measurement with a miniaturized optoelectronic biosensor and fast fluorescence-based assay.Biosens. Bioelectron.180, 112823 (2021)..
O'Sullivan, T. et al. Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules.Opt. Express18, 12513–12525 (2010)..
Vermesh, O. et al. A miniaturized optoelectronic biosensor for real-time point-of-care total protein analysis.MethodsX8, 101414 (2021)..
Gao, Y. N. et al. A novel oven structure for improving temperature uniformity of vapor cell in atomic sensors.Results Phys.47, 106339 (2023)..
Wu, Z. K. et al. High-resolution optical magnetic resonance imaging of electronic spin polarization in miniaturized atomic sensors.Appl. Phys. Lett.121, 204103 (2022)..
Zhou, P. et al. Application of VCSEL in bio-sensing atomic magnetometers.Biosensors12, 1098 (2022)..
Xun, M. et al. High single fundamental-mode output power from 795 nm VCSELs with a long monolithic cavity.IEEE Electron Dev. Lett.44, 1144–1147 (2023)..
Zhang, J. W. et al. High-temperature operating 894.6nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks.Opt. Express23, 14763–14773 (2015)..
Huang, M., Serkland, D. K.&Camparo, J. A narrow-linewidth three-mirror VCSEL for atomic devices.Appl. Phys. Lett.121, 114002 (2022)..
Serkland, D. K. et al. VCSELs for atomic sensors.Proceedings of the SPIE 6484, Vertical-Cavity Surface-Emitting Lasers XI. p. 648406 (SPIE, 2007).
Zhang, G. Y. et al. An integrated high-sensitivity VCSEL-based spin-exchange relaxation-free magnetometer with optical rotation detection.IEEE Sens. J.22, 7700–7708 (2022)..
Vicarini, R. et al. Mitigation of temperature-induced light-shift effects in miniaturized atomic clocks.IEEE Trans. Ultrason. Ferroelectr. Freq. Control66, 1962–1967 (2019)..
Park, J. et al. Flexible hybrid approach for a 3D integrated physics package of chip-scale atomic clocks.IEEE Sens. J.21, 6839–6846 (2021)..
Zhang, S. W. et al. Geometric-phase-lens collimated vertical-cavity surface-emitting laser turned on Rb D1line for miniature atomic magnetometers.IEEE Trans. Instrum. Meas.72, 4000307 (2023)..
Yoshikawa, T. et al. Polarization-controlled single-mode VCSEL.IEEE J. Quant. Electron.34, 1009–1015 (1998)..
Choquette, K. D.&Leibenguth, R. E. Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries.IEEE Photon. Technol. Lett.6, 40–42 (1994)..
Chua, C. L. et al. Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers.Appl. Phys. Lett.73, 1631–1633 (1998)..
Ling, Y. C.&Yoo, S. J. B. Review: tunable nanophotonic metastructures.Nanophotonics12, 3851–3870 (2023)..
Liu, T. J. et al. Multipole and multimode engineering in Mie resonance-based metastructures.Nanophotonics9, 1115–1137 (2020)..
Huang, M. C. Y., Zhou, Y.&Chang-Hasnain, C. J. Erratum: a surface-emitting laser incorporating a high-index-contrast subwavelength grating.Nat. Photon.1, 297 (2007)..
Li, K. et al. Monolithic high-contrast metastructure for beam-shaping VCSELs.Optica5, 10–13 (2018)..
Jia, X. L. et al. Metasurface reflector enables room-temperature circularly polarized emission from VCSEL.Optica10, 1093–1099 (2023)..
Wen, D. D. et al. VCSELs with on-facet metasurfaces for polarization state generation and detection.Adv. Opt. Mater.9, 2001780 (2021)..
Zhang, Q. M. et al. Artificial neural networks enabled by nanophotonics.Light Sci. Appl.8, 42 (2019)..
Li, R. Z. et al. CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning.PhotoniX4, 4 (2023)..
Brown, T. B. et al. Language models are few-shot learners.Proceedings of the 34th International Conference on Neural Information Processing Systems. p. 159 (Curran Associates Inc., 2020).
Marković, D. et al. Physics for neuromorphic computing.Nat. Rev. Phys.2, 499–510 (2020)..
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing.Nat. Photon.15, 102–114 (2021)..
Wu, H. Q.&Dai, Q. H. Artificial intelligence accelerated by light.Nature589, 25–26 (2021)..
Shastri, B. J. et al.Unconventional Computing(ed Adamatzky, A.) p. 83-118 (Springer, 2018).
Liu, J. et al. Research progress in optical neural networks: theory, applications and developments.PhotoniX2, 5 (2021)..
Ashtiani, F., Geers, A. J.&Aflatouni, F. An on-chip photonic deep neural network for image classification.Nature606, 501–506 (2022)..
Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits.Nat. Photon.11, 441–446 (2017)..
Feldmann, J. et al. All-optical spiking neurosynaptic networks with self-learning capabilities.Nature569, 208–214 (2019)..
Jha, A. et al. Photonic spiking neural networks and graphene-on-silicon spiking neurons.J. Lightwave Technol.40, 2901–2914 (2022)..
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core.Nature589, 52–58 (2021)..
Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks.Nature589, 44–51 (2021)..
Meng, X. Y. et al. Compact optical convolution processing unit based on multimode interference.Nat. Commun.14, 3000 (2023)..
Chen, Z. J. et al. Deep learning with coherent VCSEL neural networks.Nat. Photon.17, 723–730 (2023)..
Bernstein, L. et al. Single-shot optical neural network.Sci. Adv.9, eadg7904 (2023)..
Brunner, D.&Fischer, I. Reconfigurable semiconductor laser networks based on diffractive coupling.Opt. Lett.40, 3854–3857 (2015)..
Skalli, A. et al. Photonic neuromorphic computing using vertical cavity semiconductor lasers.Opt. Mater. Express12, 2395–2414 (2022)..
Robertson, J. et al. Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons.Sci. Rep.10, 6098 (2020)..
Xiang, S. Y. et al. All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on a VCSEL-SA.Opt. Lett.45, 1104–1107 (2020)..
Lin, X. et al. All-optical machine learning using diffractive deep neural networks.Science361, 1004–1008 (2018)..
Li, J. X. et al. Spectrally encoded single-pixel machine vision using diffractive networks.Sci. Adv.7, eabd7690 (2021)..
Goi, E., Schoenhardt, S.&Gu, M. Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks.Nat. Commun.13, 7531 (2022)..
Zhou, T. K. et al. Large-scale neuromorphic optoelectronic computingwith a reconfigurable diffractive processing unit.Nat. Photon.15, 367–373 (2021)..
Wang, T. Y. et al. An optical neural network using less than 1 photon per multiplication.Nat. Commun.13, 123 (2022)..
Liu, Z. X.&Slavík, R. Optical injection locking: from principle to applications.J. Lightwave Technol.38, 43–59 (2020)..
Lucke, B. et al. Phase tuning of injection-locked VCSELs.IEEE Photon. Technol. Lett.13, 100–102 (2001)..
Prucnal, P. R. et al. Recent progress in semiconductor excitable lasers for photonic spike processing.Adv. Opt. Photon.8, 228–299 (2016)..
Porte, X. et al. A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser.J. Phys. Photon.3, 024017 (2021)..
Gu, M. et al. Perspective on 3D vertically-integrated photonic neural networks based on VCSEL arrays.Nanophotonics12, 827–832 (2023)..
Wu, H. N. et al. 2.6 K VCSEL data link for cryogenic computing.Appl. Phys. Lett.119, 041101 (2021)..
Izhikevich, E. M. Neural excitability, spiking and bursting.Int. J. Bifurc. Chaos10, 1171–1266 (2000)..
Hurtado, A. et al. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems.Appl. Phys. Lett.100, 103703 (2012)..
Pammi, V. A. et al. Photonic computing with single and coupled spiking micropillar lasers.IEEE J. Sel. Top. Quant. Electron.26, 1500307 (2020)..
Robertson, J. et al. Image edge detection with a photonic spiking VCSEL-neuron.Opt. Express28, 37526–37537 (2020)..
Zhang, Y. H. et al. All-optical neuromorphic binary convolution with a spiking VCSEL neuron for image gradient magnitudes.Photon. Res.9, B201–B209 (2021)..
Robertson, J. et al. Ultrafast neuromorphic photonic image processing with a VCSEL neuron.Sci. Rep.12, 4874 (2022)..
Skalli, A. et al. Computational metrics and parameters of an injection-locked large area semiconductor laser for neural network computing [Invited].Opt. Mater. Express12, 2793–2804 (2022)..
Skalli, A. et al. A high performance fully tunable laser-based neural network.Optica Nonlinear Optics Topical Meeting 2023. p. Tu3B. 2 (Optica Publishing Group, 2023).
Bueno, J. et al. Comprehensive performance analysis of a VCSEL-based photonic reservoir computer.IEEE Photon. Technol. Lett.33, 920–923 (2021)..
Owen-Newns, D. et al. GHz rate neuromorphic photonic spiking neural network with a single vertical-cavity surface-emitting laser (VCSEL).IEEE J. Sel. Top. Quant. Electron.29, 1500110 (2023)..
Pflüger, M. et al. Experimental reservoir computing with diffractively coupled VCSELs.Opt. Lett.49, 2285–2288 (2024)..
Zhou, H. L. et al. Photonic matrix multiplication lights up photonic accelerator and beyond.Light Sci. Appl.11, 30 (2022)..
Goodman, J. W., Dias, A. R.&Woody, L. M. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms.Opt. Lett.2, 1–3 (1978)..
Olmstead, T. et al. Analog performance characteristics of a VCSEL in an analog optical vector matrix processor.Proceedings of the SPIE 3003, Vertical-Cavity Surface-Emitting Lasers. (SPIE, 1997).
Carter, J. A. et al.Optical Computing. p. OTuE5 (Optica Publishing Group, 1995).
Nakano, H.&Hotate, K. Optical system for real-time multiplication of the multiple matrix with a 2-D light source array.Appl. Opt.26, 917–923 (1987)..
Gruber, M., Jahns, J.&Sinzinger, S. Planar-integrated optical vector-matrix multiplier.Appl. Opt.39, 5367–5373 (2000)..
Liu, C. et al. A programmable diffractive deep neural network based on a digital-coding metasurface array.Nat. Electron.5, 113–122 (2022)..
Goi, E. et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip.Light Sci. Appl.10, 40 (2021)..
Luo, X. H. et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible.Light Sci. Appl.11, 158 (2022)..
Fu, T. Z. et al. Photonic machine learning with on-chip diffractive optics.Nat. Commun.14, 70 (2023)..
Qian, C. et al. Dynamic recognition and mirage using neuro-metamaterials.Nat. Commun.13, 2694 (2022)..
Chen, H. et al. Diffractive deepneural networks at visible wavelengths.Engineering7, 1483–1491 (2021)..
Veli, M. et al. Terahertz pulse shaping using diffractive surfaces.Nat. Commun.12, 37 (2021)..
Luo, Y. et al. Computational imaging without a computer: seeing through random diffusers at the speed of light.eLight2, 4 (2022)..
Park, J. et al. Artificial intelligence-enabled quantitative phase imaging methods for life sciences.Nat. Methods20, 1645–1660 (2023)..
Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting.Nat. Photon.15, 932–938 (2021)..
Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers.Nat. Photon.8, 406–411 (2014)..
Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams.Nat. Mater.18, 121–128 (2019)..
Yoshida, M. et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser.Nature618, 727–732 (2023)..
Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities.Nature608, 692–698 (2022)..
Yang, L. C. et al. Topological-cavity surface-emitting laser.Nat. Photon.16, 279–283 (2022)..
Luan, H. Y. et al. Reconfigurable moiré nanolaser arrays with phase synchronization.Nature624, 282–288 (2023)..
Ma, R. M.&Oulton, R. F. Applications of nanolasers.Nat. Nanotechnol.14, 12–22 (2019)..
Zeng, Y. Q. et al. Electrically pumped topological laser with valley edge modes.Nature578, 246–250 (2020)..
Tamir, D. E. et al. High-speed and low-power electro-optical DSP coprocessor.J. Opt. Soc. Am. A26, A11–A20 (2009)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution